Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Tissue Eng Regen Med ; 14(10): 1449-1464, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32750189

RESUMO

Multiple sclerosis (MS) is an autoimmune disease, associated with central nervous system (CNS) inflammation, demyelination, and axonal loss. Myelin, a multilayer membranous that covers nerve fibers, is essential for rapid impulse conduction. Oligodendrocytes that are generated either from CNS-resident oligodendrocyte progenitor cells (OPCs) or subventricular zone-derived neural stem cells (NSCs) are the myelinating cells of the CNS. The adult CNS maintains a certain endogenous potential to repair myelin damage. However, this process often fails as MS progresses. The origin of this failure is not fully understood, but it is likely to relate to progenitors/stem cells' arrestment in a quiescent state, incapable of generating new oligodendrocyte. Current treatments for MS are immunomodulatory or immunosuppressive medications, with little to no effect on myelin restoration. Recent studies have provided proof-of-principle that CNS remyelination can be promoted either via enhancing endogenous remyelination or by transplanting myelinating cells. Curcumin, a natural polyphenolic compound, has been shown to have therapeutic properties in several neurodegenerative diseases. Here, we investigated the effect of a curcumin nanoformulation, dendrosomal nanoparticles (DNC) on oligodendrogenesis and remyelination, both in vitro and in animal model of demyelination. We indicated that DNC enhanced oligodendrogenesis from NSCs and OPCs, in vitro in dose dependent manner. DNC also induced in vivo remyelination via promotion of oligodendrogenesis. Furthermore, DNC enhanced remyelination capacity of transplanted NSCs through promoting their survival and oligodendrogenesis capacity. Our findings suggest that DNC has significant beneficial effects in demyelinating conditions, either as mono-therapy or as being paired with transplantation approaches.


Assuntos
Curcumina/uso terapêutico , Doenças Desmielinizantes/tratamento farmacológico , Nanopartículas/química , Neurogênese , Oligodendroglia/metabolismo , Remielinização/efeitos dos fármacos , Doença Aguda , Animais , Astrócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Doença Crônica , Cuprizona , Curcumina/farmacologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Embrião de Mamíferos/citologia , Masculino , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/transplante , Neurogênese/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos
2.
Life Sci ; 239: 116908, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31610197

RESUMO

AIMS: An important obstacle on the way of cell-based therapy is the risk of tumorigenicity in the patients benefit from these transplanted cells due to undifferentiated cells which participate in transplantation. Curcumin, the main compound of spice turmeric -as one of the natural products-was demonstrated to possess effective anti-cancer properties, with no significant effect on normal cells in dose and/or time-dependent manner. Furthermore many studies have been accomplished using curcumin for diabetes treatment. Therefore in this study we examined the efficacy of IPCs treated with curcumin in vivo. MAIN METHODS: Differentiation efficiency investigated by flowcytometry. RNA extraction and real-time PCR performed for important genes in IPC differentiation and tumorigenesis including Insulin, Nestin, Ngn3, Pdx1, P21, and P53. Finally we investigated the efficiency of these differentiated and treated cells in diabetic rats. KEY FINDINGS: Our data indicates that nanocurcumin -in a specific dose-reduces the expression of Nestin with no significant effect on insulin expression in mRNA and protein level. Besides blood glucose level of diabetic rats which treated with DNC + cells, decreased from average 350 (mg/dI) to 100 (mg/dI). Checking out the pancreases of these rats, demonstrated that their endocrine segment was rebuilt. Moreover hematoxylin & eosin staining and IF results revealed that the Langerhans Islands were reformed. SIGNIFICANCE: IPCs' which treated with DNC were able to efficiently control the blood glucose level in diabetic rats which these cells were transplanted to them. Hence Curcumin has the potential to be employed in this kind of cell therapy.


Assuntos
Curcumina/farmacologia , Diabetes Mellitus Experimental/terapia , Animais , Glicemia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Curcumina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/terapia , Modelos Animais de Doenças , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Pâncreas/metabolismo , Ratos , Ratos Wistar
3.
Mol Biol Rep ; 44(4): 341-351, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28752270

RESUMO

Despite advantageous antitumor properties of doxorubicin, the considerable cytotoxicity of this chemotherapeutic agent has made it necessary to develop combination treatment strategies. The aim of the current study was to investigate the possible synergism between dendrosomal nanocurcumin (DNC) and doxorubicin in eliciting anticancer effects on MDA-MB-231 metastatic breast cancer cells. The expression levels of CXCL12/CXCR4 axis and Hedgehog pathway genes were evaluated in patient-derived breast carcinoma tissues by qRT-PCR. MTT assay, Annexin V-FITC staining followed by flowcytomety and wound healing assay were used to measure the effects caused by DNC and doxorubicin, alone and in combination, on the viability, apoptosis induction, and migration of MDA-MB-231 cells, respectively. Also, qRT-PCR was exploited to analyze the expression of Smo, NF-κB and CXCR4 in cancer cells. Our results revealed that combination treatment with DNC and doxorubicin leads to significantly decreased viability, increased apoptosis, and reduced migration of breast cancer cells compared with using each drug alone. Also, combination treatment is more efficient that single treatment in reducing the expression levels of NF-κB and Smo transcripts. Our findings provide convincing support for the notion that DNC could synergistically enhance the anticancer effects of doxorubicin on metastatic breast cancer cells by improving its anti-proliferative, pro-apoptotic, and anti-migratory activities. This may be mediated, in part, by downregulating CXCR4, NF-κB, and Smo genes. Overall, the findings of the current study suggest that DNC might be used as a synergistic agent for enhancing therapeutic efficiency and reducing toxic effects of doxorubicin on breast cancer cells.


Assuntos
Curcumina/uso terapêutico , Doxorrubicina/uso terapêutico , Quimioterapia Combinada/métodos , Adulto , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Curcumina/metabolismo , Doxorrubicina/metabolismo , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Humanos , Pessoa de Meia-Idade , NF-kappa B/genética , NF-kappa B/metabolismo , Receptores CXCR4/genética , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
4.
Asian Pac J Cancer Prev ; 17(S3): 219-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165229

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver making up more than 80 percent of cases. It is known to be the sixth most prevalent cancer and the third most frequent cause of cancer related death worldwide. Epigenetic regulation constitutes an important mechanism by which dietary components can selectively activate or inactivate target gene expression. The miR-34 family members including mir-34a, mir-34b and mir-34c are tumor suppressor micro RNAs, which are expressed in the majority of normal tissues. Several studies have indicated silencing of miR-34 expression via DNA methylation in multiple types of cancers. Bioactive nutrients like curcumin (Cur) have excellent anticarcinogenic activity and minimal toxic manifestations in biological systems. This compound has recently been determined to induce epigenetic changes. However, Cur is lipophilic and has a poor systemic bioavailability and poor absorption. Its bioavailability is increased through employing dendrosome nanoparticles. The aim of the current study was to investigate the effect of dendrosomal nanocurcumin (DNC) on expression of mir-34 family members in two HCC cell lines, HepG2 and Huh7. We performed the MTT assay to evaluate DNC and dendrosome effects on cell viability. The ability of DNC to alter expression of the mir-34 family and DNA methyltransferases (DNMT1, DNMT3A and 3B) was evaluated using semi-quantitative and quantitative PCR. We observed the entrance of DNC into HepG2 and Huh7 cells. Gene expression assays indicated that DNC treatment upregulated mir34a, mir34b and mir34c expression (P<0.05) as well as downregulated DNMT1, DNMT3A and DNMT3B expression (P<0.05) in both HepG2 and Huh7 cell lines. DNC also reduced viability of Huh7 and HepG2 cells through restoration of miR-34s expression. We showed that DNC could awaken the epigenetically silenced miR-34 family by downregulation of DNMTs. Our findings suggest that DNC has potential in epigenetic therapy of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Curcumina/farmacologia , DNA (Citosina-5-)-Metiltransferases/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , DNA Metiltransferase 3A , Portadores de Fármacos/química , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA