Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36678625

RESUMO

The foremost target of the current work was to formulate and optimize a novel bergamot essential oil (BEO) loaded nano-phytosomes (NPs) and then combine it with spironolactone (SP) in order to clinically compare the efficiency of both formulations against acne vulgaris. The BEO-loaded NPs formulations were fabricated by the thin-film hydration and optimized by 32 factorial design. NPs' assessments were conducted by measuring entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). In addition, the selected BEO-NPs formulation was further combined with SP and then examined for morphology employing transmission electron microscopy and three months storage stability. Both BEO-loaded NPs selected formula and its combination with SP (BEO-NPs-SP) were investigated clinically for their effect against acne vulgaris after an appropriate in silico study. The optimum BEO-NPs-SP showed PS of 300.40 ± 22.56 nm, PDI of 0.571 ± 0.16, EE% of 87.89 ± 4.14%, and an acceptable ZP value of -29.7 ± 1.54 mV. Molecular modeling simulations showed the beneficial role of BEO constituents as supportive/connecting platforms for favored anchoring of SP on the Phosphatidylcholine (PC) interface. Clinical studies revealed significant improvement in the therapeutic response of BEO-loaded NPs that were combined with SP over BEO-NPs alone. In conclusion, the results proved the ability to utilize NPs as a successful nanovesicle for topical BEO delivery as well as the superior synergistic effect when combined with SP in combating acne vulgaris.

2.
Nanomedicine ; 39: 102466, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34587542

RESUMO

The purpose of this work was to incorporate an optimized pomegranate extract loaded solid lipid nanoparticles (PE-SLNs) formula in a transdermal emulgel to evaluate its anticancer effect. The prepared emulgel formulae were evaluated for their physicochemical properties. An ex vivo permeation study was done through mouse skin and the kinetic parameters were determined. Kinetic data showed that the ex vivo permeation of PE from SLNs transdermal emulgel through mouse skin followed non-Fickian diffusion transport. Further, in vivo study was done by applying the optimized PE-SLNs transdermal emulgel on mice skin bearing a solid form of Ehrlich ascites carcinoma (EAC) as well as free PE, control, placebo, and standard groups for comparison. In addition, histopathological examinations of the samples obtained from the EAC mice model were performed. The results proved that application of the selected PE-SLNs emulgel formulation on the mice skin bearing solid tumor revealed statistically significant anticancer effects.


Assuntos
Carcinoma , Nanopartículas , Punica granatum , Animais , Ascite , Portadores de Fármacos/química , Lipídeos/química , Lipossomos , Camundongos , Nanopartículas/química , Tamanho da Partícula , Extratos Vegetais/uso terapêutico
3.
Drug Deliv ; 28(1): 2618-2633, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894947

RESUMO

Aquilaria malaccensis has been traditionally used to treat several medical disorders including inflammation. However, the traditional claims of this plant as an anti-inflammatory agent has not been substantially evaluated using modern scientific techniques. The main objective of this study was to evaluate the anti-inflammatory effect of Aquilaria malacensis leaf extract (ALEX-M) and potentiate its activity through nano-encapsulation. The extract-loaded nanocapsules were fabricated using water-in-oil-in-water (w/o/w) emulsion method and characterized via multiple techniques including DLS, TEM, FTIR, and TGA. The toxicity and the anti-inflammatory activity of ALEX-M and the extract-loaded nanocapsules (ALEX-M-PNCs) were evaluated in-vitro on RAW 264.7 macrophages and in-vivo on zebrafish embryos. The nanocapsules demonstrated spherical shape with mean particle diameter of 167.13 ± 1.24 nm, narrow size distribution (PDI = 0.29 ± 0.01), and high encapsulation efficiency (87.36 ± 1.81%). ALEX-M demonstrated high viability at high concentrations in RAW 264.7 cells and zebrafish embryos, however, ALEX-M-PNCs showed relatively higher cytotoxicity. Both free and nanoencapsulated extract expressed anti-inflammatory effects through significant reduction of the pro-inflammatory mediator nitric oxide (NO) production in LPS/IFNγ-stimulated RAW 264.7 macrophages and zebrafish embryos in a concentration-dependent manner. The findings highlight that ALEX-M can be recognized as a potential anti-inflammatory agent, and its anti-inflammatory activity can be potentiated by nano-encapsulation. Further studies are warranted toward investigation of the mechanistic and immunomodulatory roles of ALEX-M.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/patologia , Nanocápsulas/química , Extratos Vegetais/farmacologia , Thymelaeaceae , Animais , Anti-Inflamatórios/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Embrião não Mamífero , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/metabolismo , Tamanho da Partícula , Extratos Vegetais/administração & dosagem , Folhas de Planta , Células RAW 264.7 , Propriedades de Superfície , Peixe-Zebra
4.
Int J Nanomedicine ; 13: 1313-1326, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29563789

RESUMO

BACKGROUND: Pomegranate extract (PE) is a natural product with potent antioxidant and anticancer activity because of its polyphenols content. The main purpose of this study was to maximize the PE chemotherapeutic efficacy by loading it in an optimized solid lipid nanoparticles (SLNs) formula. MATERIALS AND METHODS: The influence of independent variables, which were lipid concentration (X1), surfactant concentration (X2) and cosurfactant concentration (X3), on dependent ones, which were particle size (Y1), polydispersity index (Y2), zeta potential (Y3), entrapment efficiency (Y4) and cumulative % drug release (Y5), were studied and optimized using the Box-Behnken design. Fifteen formulations of PE-SLNs were prepared using hot homogenization followed by ultra-sonication technique. Response surface plots, Pareto charts and mathematical equations were produced to study the impact of independent variables on the dependent quality parameters. The anti-proliferative activity of the optimized formula was then evaluated in three different cancer cell lines, namely, MCF-7, PC-3 and HepG-2, in addition to one normal cell line, HFB-4. RESULTS: The results demonstrated that the particle sizes ranged from 407.5 to 651.9 nm and the entrapment efficiencies ranged from 56.02 to 65.23%. Interestingly, the 50% inhibitory concentration of the optimized formula had more than a 40-fold improved effect on the cell growth inhibition in comparison with its free counterpart. Furthermore, it was more selective against cancer cells than normal cells particularly in MCF-7 breast cancer cells. CONCLUSION: These data proved that nanoencapsulation of PE enhanced its anticancer efficacy. Therefore, our results suggested that a PE-loaded SLNs optimized-formula could be a promising chemo therapeutic agent.


Assuntos
Lipídeos/química , Lythraceae/química , Nanopartículas/química , Nanopartículas/toxicidade , Extratos Vegetais/química , Análise de Variância , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Portadores de Fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Nanopartículas/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA