RESUMO
Despite extensive research on the toxic effects of microplastics (MPs), there is no obtainable data on the use of phytobioremediation against MPs toxicity in fish. This study aimed to investigate the protective role of lycopene, citric acid, and chlorella against the toxic effects of MPs in African catfish (Clarias gariepinus) using hematology, biochemical, antioxidants, erythron profiles (poikilocytosis and nuclear abnormalities) and the accumulation of MPs in tissues as biomarkers. Five groups of fish received: normal diet (control); MPs (500 mg/kg diet) (Group 2); MPs (500 mg/kg diet) + lycopene (500 mg/kg diet) (Group 3); MPs (500 mg/kg diet) + citric acid (30 g/kg diet) (Group 4); and MPs (500 mg/kg diet) + chlorella (50 g/kg diet) (Group 5) for 15 days. Group 2 had significantly higher amounts of MPs in the stomach, gills, and feces, electrolyte imbalances (HCO3, Fe, Na+, K+, Ca+2, Cl-, and anion gap, hematobiochemical alterations, and decreases in the activities of superoxide dismutase, catalase, total antioxidant capacity, and glutathione S-transferases compared to the control group. Additionally, Group 2 had significant increase in the percentage of poikilocytosis, and nuclear abnormalities in RBC's compared to the control group. The co-treatment of MPs-exposed fish with lycopene, citric acid, and chlorella-supplemented diets ameliorated the hematological, biochemical, and erythron profile alterations, but only slightly enhanced the antioxidant activity. Overall, lycopene, citric acid, and chlorella can be recommended as a feed supplement to improve hematobiochemical alterations and oxidative damage induced by MPs toxicity in the African catfish (C. gariepinus).