Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomolecules ; 13(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759722

RESUMO

BACKGOUND: Pyeongwi-san (PWS) is a widely used formula for treating digestive disorders in Korea and China. Inflammatory bowel disease (IBD) is characterized by progressive inflammation of the gastrointestinal tract. Emerging evidence supports the protective effect of PWS against IBD, but specific mechanisms are still elusive. METHODS: Active compounds of PWS were screened from the medicinal materials and chemical compounds in Northeast Asian traditional medicine (TM-MC) in the consideration of drug-likeness and oral bioavailability. Target candidates of active compounds were predicted using the ChEMBL database. IBD-related targets were obtained from the GeneCards and DisGeNET databases. The network of composition-targets-disease was constructed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were analyzed. Molecular docking was used to simulate the binding affinity of active compounds on target proteins and molecular dynamics was used to validate the molecular docking result. RESULTS: A total of 26 core target proteins of PWS were related to IBD. Enrichment analysis suggested that PWS is highly associated with tumor necrosis factor signaling pathway, apoptosis, and the collapse of tight junctions. Moreover, molecular docking and molecular dynamics simulation proposed ß-eudesmol and (3R,6R,7S)-1,10-bisaboladien-3-ol to ameliorate IBD through the binding to TNF and MMP9, respectively. CONCLUSION: Present in silico analysis revealed potential pathways and insight of PWS to regulate IBD. These results imply that the therapeutic effect of PWS might be achieved via an inhibitory effect.

2.
J Tradit Complement Med ; 13(3): 263-269, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37128191

RESUMO

Background and aim: It has been reported that acupuncture at GB34 can enhance neurogenesis in the subventricular zone (SVZ) of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the signaling pathway that plays a critical role in neurogenesis needs to be established. Herein, we investigated the neurogenesis-promoting pathway mediated by acupuncture, focusing on extracellular signal-regulated kinase (ERK) signaling. Experimental procedure: Male 10-week-old C57BL/6 mice were intraperitoneally injected with 30 mg/kg MPTP once daily for 5 days. Subsequently, mice were intraperitoneally injected with 50 mg/kg bromodeoxyuridine (BrdU), and electroacupuncture (EA) was performed at GB34 and BL60 for 3 weeks. The survival of dopaminergic neurons in the nigrostriatal pathway, cell proliferation in the SVZ, and expression levels of brain-derived neurotrophic factor (BDNF) and phosphorylated ERK (pERK) were evaluated. Results and conclusion: MPTP induced dopaminergic neuronal death in the nigrostriatal pathway, and reduced the number of BrdU-positive and BrdU/doublecortin double-positive cells in the SVZ; these parameters were restored by EA. Moreover, EA prevented MPTP-induced reduction in striatal expression of BDNF and pERK. These results indicate that EA could prevent dopaminergic neuronal death in the nigrostriatal pathway and restore neurogenesis in the SVZ, which may be attributed to the activation of the BDNF-ERK pathway.

3.
J Integr Med ; 19(6): 537-544, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34580047

RESUMO

OBJECTIVE: Mitophagy is known to contribute towards progression of Parkinson's disease. Korean red ginseng (KRG) is a widely used medicinal herb in East Asia, and recent studies have reported that KRG prevents 1-methyl-4-phenylpyridinium ion (MPP+)-induced cell death. This study was undertaken to investigate whether KRG suppresses MPP+-induced apoptosis and mitophagy. METHODS: SH-SY5Y cells were incubated with KRG for 24 h, and subsequently exposed to MPP+. The MPP+-induced cell death was confirmed with the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Changes in the structure and function of mitochondria were confirmed using mitotracker, MitoSOX red mitochondrial superoxide indicator, parkin, and phosphatase and tensin homolog deleted on chromosome ten-induced putative kinase 1 (PINK1) immunofluorescent staining. Western blotting was performed to evaluate the expression of apoptosis-related factors in whole cells, including Bax, Bcl-2 and cleaved caspase-3, and mitophagy-related factors in the mitochondrial fraction, including cytochrome c, parkin, PINK1, translocase of the outer membrane 20 (TOM20), p62 and Beclin 1. RESULTS: MPP+ induced cell death by cytochrome c release and caspase-3 activation; however, this effect was suppressed by KRG's regulation of the expressions of Bcl-2 and Bax. Moreover, MPP+ exposure increased the mitochondrial expressions of parkin, PINK1, Beclin 1 and p62, and decreased TOM20, cytochrome c and Bcl-2 expressions. These MPP+-induced changes in the mitochondrial fraction were attenuated by treatment with KRG. CONCLUSION: KRG effectively prevents MPP+-induced SH-SY5Y cell death by regulating cytochrome c release from mitochondria and PINK1/parkin-mediated mitophagy, through regulation of the Bcl-2 family.


Assuntos
1-Metil-4-fenilpiridínio , Mitofagia , Panax , 1-Metil-4-fenilpiridínio/toxicidade , Apoptose , Linhagem Celular Tumoral , Humanos , Mitocôndrias , Panax/química , Espécies Reativas de Oxigênio
4.
Brain Behav Immun ; 94: 410-423, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33662500

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease involving dopaminergic neuronal death in the substantia nigra (SN); recent studies have shown that interactions between gut and brain play a critical role in the pathogenesis of PD. In this study, the anti-inflammatory effect of Korean red ginseng (KRG) and the changes in gut microbiota were evaluated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Male nine-week-old C57BL/6 mice were injected intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 days. Two hours after the daily MPTP injection, the mice were orally administered 100 mg/kg of KRG, which continued for 7 days beyond the MPTP injections, for a total of 12 consecutive days. Eight days after the final KRG administration, the pole and rotarod tests were performed and brain and colon samples of the mice were collected. Dopaminergic neuronal death, activation of microglia and astrocytes, α-synuclein and expressions of inflammatory cytokines and disruption of tight junction were evaluated. In addition, 16S ribosomal RNA gene sequencing of mouse fecal samples was performed to investigate microbiome changes. KRG treatment prevented MPTP-induced behavioral impairment, dopaminergic neuronal death, activation of microglia and astrocytes in the nigrostriatal pathway, disruption of tight junction and the increase in α-synuclein, interleukin-1ß and tumor necrosis factor-α expression in the colon. The 16S rRNA sequencing revealed that MPTP altered the number of bacterial species and their relative abundances, which were partially suppressed by KRG treatment. Especially, KRG suppressed the abundance of the inflammation-related phylum Verrucomicrobia and genera Ruminococcus and Akkermansia (especially Akkermansia muciniphila), and elevated the abundance of Eubacterium, which produces the anti-inflammatory substances. These findings suggest that KRG prevents MPTP-induced dopaminergic neuronal death, activation of microglia and astrocytes, and accumulation of α-synuclein in the SN, and the regulation of inflammation-related factors in the colon may influence the effect.


Assuntos
Doenças Neurodegenerativas , Panax , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Colo , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirrolidinas , RNA Ribossômico 16S , Substância Negra
5.
J Med Food ; 23(12): 1231-1237, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33121350

RESUMO

Recent studies have determined that gastrointestinal function contributes to the control of Parkinson's disease (PD). Gastrointestinal dysfunction results in a leaky intestinal barrier, inducing inflammation in the gut. Korean red ginseng (KRG) is widely used for the treatment of numerous afflictions, including inflammation and neurodegenerative disease. We investigated changes in the intestinal tight junctions and proinflammatory cytokines in the colon, and alpha-synuclein (aSyn) in the colon and the substantia nigra (SN) of a PD mouse model. Eight-week-old male C57BL/6 mice were intraperitoneally administered 30 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) once a day for 5 days, and orally given 100 mg/kg of KRG for 12 consecutive days. Alterations in the levels of occludin, zonula occludens-1 (ZO-1), tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) in the colon, and the expressions of aSyn and tyrosine hydroxylase (TH) in the colon and the SN were evaluated. Oral administration of KRG significantly prevents the MPTP-induced motor dysfunction, and suppresses the MPTP-induced disruption of occludin and ZO-1, and suppresses the increase in TNF-α and IL-1ß in the colon of mice. In addition, KRG prevents accumulation of aSyn and TH in the colon and the SN. These results suggest that KRG has the potential to prevent MPTP-induced leaky gut barrier, inflammation, and accumulation of aSyn.


Assuntos
Colo/efeitos dos fármacos , Panax/química , Doença de Parkinson , Preparações de Plantas/uso terapêutico , Junções Íntimas/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Colo/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/tratamento farmacológico , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
6.
Chin J Integr Med ; 23(12): 943-947, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28986807

RESUMO

OBJECTIVE: To investigate the potential alleviating effects of acupuncture on maternal separation (MS)-induced changes in plasma pro-inflammatory cytokine levels of rat pups. METHODS: On postnatal day 15, rat pups were randomly assigned to 4 groups (n=6 per group) using a random number table: normal, MS, MS with acupuncture stimulation at Shenmen (HT 7) acupoint (MS+HT 7), and MS with acupuncture stimulation at Chengshan (BL 57) acupoint (MS+BL 57) groups. Rat pups in the normal group were housed with their mothers under standard conditions; those in the MS, MS+HT 7 and MS+BL 57 groups were maternally separated and individually maintained. Acupuncture stimulation was performed at HT 7 or BL 57 acupoints once a day for 7 consecutive days. A tail suspension test was performed to measure immobility time of rats and the plasma was collected on postnatal day 21, then levels of corticosterone (CORT), interleukin (IL)-1ß, IL-6 and glial cell-derived neurotrophic factor (GDNF) in plasma were measured. RESULTS: Compared with the normal group, the immobility time and the plasma levels of CORT, IL-1ß, IL-6 and GDNF in the MS group were significantly increased (P<0.05 or P<0.01). Compared with the MS group, the immobility time and the plasma levels of CORT, IL-1ß, IL-6 and GDNF were significantly reduced in the MS+HT 7 group (P<0.05 or P<0.01). Moreover, the immobility time and plasma levels of IL-1ß and IL-6 in the MS+HT 7 group were significantly lower than those in the MS+BL 57 group (P<0.05). CONCLUSION: Acupuncture stimulation at HT 7 can alleviate the behavioral impairment and changes of the cytokines by MS, indicating that acupuncture can help to relieve MS-induced depression.


Assuntos
Terapia por Acupuntura , Citocinas/sangue , Mediadores da Inflamação/metabolismo , Privação Materna , Animais , Animais Recém-Nascidos , Corticosterona/sangue , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/sangue , Imobilização , Ratos Sprague-Dawley , Fatores de Tempo
7.
Chin J Integr Med ; 23(3): 215-220, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27586472

RESUMO

OBJECTIVES: To clarify the effects of acupuncture stimulation at Zusanli (ST 36) on the hormonal changes. METHODS: Eight-week-old male C57BL/6 mice received acupuncture stimulation at acupoint ST 36 or Quchi (LI 11) once a day for 3 or 5 days in the acupuncture-stimulated groups, but not received in the normal group (n=6 in each group). On day 3 or 5, animals were given 0.1 mL of charcoal orally with a bulbed steel needle, 30 min after the last acupuncture stimulation. Ten minutes later, mice were anesthetized, and the intestinal transit and the concentrations of vasoactive intestinal peptide (VIP), motilin, ghrelin and gastrin in the serum were measured. RESULTS: Compared to no acupuncture stimulation, acupuncture stimulation at ST 36 for 5 days increased the intestinal transit and down-regulated the concentration of VIP and up-regulated the concentrations of motilin, ghrelin and gastrin (P<0.05 or 0.01), whereas acupuncture stimulation at LI 11 did not change them signifificantly (P>0.05). CONCLUSION: Acupuncture stimulation at ST 36 for 5 days enhances the small intestinal motility and regulates the secretion of hormones related to small intestinal motility.


Assuntos
Pontos de Acupuntura , Terapia por Acupuntura , Motilidade Gastrointestinal/fisiologia , Hormônios/sangue , Intestino Delgado/fisiologia , Animais , Masculino , Camundongos Endogâmicos C57BL
8.
Artigo em Inglês | MEDLINE | ID: mdl-23970931

RESUMO

Kainic acid (KA) is a neurotoxin that induces epileptic seizures and excitotoxicity in the hippocampus. Acupuncture is frequently used as an alternative therapy for epilepsy, and it has been known to protect hippocampal neurons against KA toxicity. Using proteomic analysis, we investigated protein expression changes in the hippocampus following acupuncture stimulation at HT8. Eight-week-old male C57BL/6 mice (20-25 g) received acupuncture treatment at HT8 acupoint bilaterally once a day for 3 days and were then administered KA (30 mg/kg) intraperitoneally. Twenty-four hours after KA injection, neuronal survival and astrocyte activation in the hippocampus were measured, and protein expression in the hippocampus was identified by 2-dimensional electrophoresis. Acupuncture stimulation at HT8 suppressed KA-induced neuronal death and astrocyte activation in the hippocampus. We identified the changes in the expression of 11 proteins by KA or acupuncture stimulation at HT8 and found that acupuncture stimulation at HT8 normalized the expression of dihydropyrimidinase-related protein 2 and upregulated the expression of transcriptional activator protein pur-alpha, serine/threonine-protein phosphatase 5, and T-complex protein 1 subunit alpha, which are related to the survival of neurons. These results suggest that acupuncture stimulation at HT8 changes protein expression profiles in the hippocampus in favor of neuronal survival in KA-treated mice.

9.
J Med Food ; 13(5): 1133-40, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20828308

RESUMO

The stems with hook of Uncaria rhynchophylla have been used in traditional medicine as an antipyretic, antihypertensive, and anticonvulsant in China and Korea. In this study, we investigated the mechanism responsible for anti-inflammatory effects of U. rhynchophylla in RAW 264.7 macrophages. The aqueous extract of U. rhynchophylla inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and interleukin (IL)-1ß secretion as well as inducible NO synthase (iNOS) expression, without affecting cell viability. Furthermore, U. rhynchophylla suppressed LPS-induced nuclear factor κB (NF-κB) activation, phosphorylation, and degradation of inhibitory protein IκB (IκB)-α, phosphorylation of Akt, extracellular signal-regulated kinase 1/2, p38 kinase, and c-Jun N-terminal kinase. These results suggest that U. rhynchophylla has the inhibitory effects on LPS-induced NO and IL-1ß production in macrophages through blockade in the phosphorylation of Akt and mitogen-activated protein kinases, following IκB-α degradation and NF-κB activation.


Assuntos
Anti-Inflamatórios/farmacologia , Interleucina-1beta/antagonistas & inibidores , Macrófagos/fisiologia , Óxido Nítrico/antagonistas & inibidores , Extratos Vegetais/farmacologia , Uncaria/química , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Proteínas I-kappa B/metabolismo , Interleucina-1beta/biossíntese , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidor de NF-kappaB alfa , NF-kappa B/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Caules de Planta/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA