Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(6)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37798251

RESUMO

Natural products have successfully treated several diseases using a multi-component, multi-target mechanism. However, a precise mechanism of action (MOA) has not been identified. Systems pharmacology methods have been used to overcome these challenges. However, there is a limitation as those similar mechanisms of similar components cannot be identified. In this study, comparisons of physicochemical descriptors, molecular docking analysis and RNA-seq analysis were performed to compare the MOA of similar compounds and to confirm the changes observed when similar compounds were mixed and used. Various analyses have confirmed that compounds with similar structures share similar MOA. We propose an advanced method for in silico experiments in herbal medicine research based on the results. Our study has three novel findings. First, an advanced network pharmacology research method was suggested by partially presenting a solution to the difficulty in identifying multi-component mechanisms. Second, a new natural product analysis method was proposed using large-scale molecular docking analysis. Finally, various biological data and analysis methods were used, such as in silico system pharmacology, docking analysis and drug response RNA-seq. The results of this study are meaningful in that they suggest an analysis strategy that can improve existing systems pharmacology research analysis methods by showing that natural product-derived compounds with the same scaffold have the same mechanism.


Assuntos
Produtos Biológicos , Medicamentos de Ervas Chinesas , Plantas Medicinais , Simulação de Acoplamento Molecular , Transcriptoma , Produtos Biológicos/farmacologia , Extratos Vegetais , Medicina Tradicional Chinesa
2.
Front Pharmacol ; 14: 1187896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637410

RESUMO

Background: Herbal medicines traditionally target organs for treatment based on medicinal properties, and this theory is widely used for prescriptions. However, the scientific evidence explaining how herbs act on specific organs by biological methods has been still limited. This study used bioinformatic tools to identify the target organ locations of Radix Achyranthis Bidentatae (RAB), a blood-activating herb that nourishes the liver and kidney, strengthens bones, and directs prescription to the lower body. Methods: RAB's active compounds and targets were collected and predicted using databases such as TCMSP, HIT2.0, and BATMAN-TCM. Next, the RAB's target list was analyzed based on two approaches to obtain target organ locations. DAVID and Gene ORGANizer enrichment-based approaches were used to enrich an entire gene list, and the BioGPS and HPA gene expression-based approaches were used to analyze the expression of core genes. Results: RAB's targets were found to be involved in whole blood, blood components, and lymphatic organs across all four tools. Each tool indicated a particular aspect of RAB's target organ locations: DAVID-enriched genes showed a predominance in blood, liver, and kidneys; Gene ORGANizer showed the effect on low body parts as well as bones and joints; BioGPS and HPA showed high gene expression in bone marrow, lymphoid tissue, and smooth muscle. Conclusion: Our bioinformatics-based target organ location prediction can serve as a modern interpretation tool for the target organ location theory of traditional medicine. Future studies should predict therapeutic target organ locations in complex prescriptions rather than single herbs and conduct experiments to verify predictions.

3.
Nutrients ; 15(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242247

RESUMO

In cell-based regenerative medicine, induced pluripotent stem cells (iPSCs) generated from reprogrammed adult somatic cells have emerged as a useful cell source due to the lack of ethical concerns and the low risk of immune rejection. To address the risk of teratoma formation, which is a safety issue in iPSC-based cell therapy, it is essential to selectively remove undifferentiated iPSCs remaining in the iPSC-derived differentiated cell product prior to in vivo transplantation. In this study, we explored whether an ethanol extract of coptidis rhizoma (ECR) exhibited anti-teratoma activity and identified the active components involved in the selective elimination of undifferentiated iPSCs. Transcriptome analysis of iPSCs confirmed that cell death-related pathways were significantly altered by ECR treatment. Our results demonstrate that ECR effectively induced apoptotic cell death and DNA damage in iPSCs, and that reactive oxygen species generation, mitochondrial damage, caspase activation, and p53 activation were involved in ECR-mediated iPSC death. However, in iPSC-derived differentiated cells (iPSC-Diff), reduced cell viability and the DNA damage response were not observed after ECR treatment. We co-cultured iPSCs and iPSC-Diff and found that ECR treatment selectively removed iPSCs, whereas iPSC-Diff remained intact. Prior to in ovo implantation, ECR treatment of a mixed cell culture of iPSCs and iPSC-Diff significantly suppressed iPSC-derived teratoma formation. Among the main components of the ECR, berberine and coptisine showed selective cytotoxicity to iPSCs but not to iPSC-Diff. Together, these results indicate the usefulness of ECRs in preparing safe and effective iPSC-based therapeutic cell products with no risk of teratoma formation.


Assuntos
Medicamentos de Ervas Chinesas , Células-Tronco Pluripotentes Induzidas , Humanos , Adulto , Células-Tronco Pluripotentes Induzidas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Etanol/farmacologia , Apoptose , Diferenciação Celular
4.
Front Pharmacol ; 13: 1010520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304143

RESUMO

Pharmacogenomic analysis based on drug transcriptomic signatures is widely used to identify mechanisms of action and pharmacological indications. Despite accumulating reports on the efficacy of medicinal herbs, related transcriptome-level analyses are lacking. The aim of the present study was to elucidate the underlying molecular mechanisms of action of Bupleuri Radix (BR), a widely used herbal medicine, through a systematic transcriptomic analysis. We analyzed the drug-responsive transcriptome profiling of A549 lung cancer cell line after treating them with multiple doses of BR water (W-BR) and ethanol (E-BR) extracts and their phytochemicals. In vitro validation experiments were performed using both A549 and the immortalized human keratinocyte line HaCaT. Pathway enrichment analysis revealed the anti-cancer effects of BR treatment via inhibition of cell proliferation and induction of apoptosis. Enhanced cell adhesion and migration were observed with the W-BR but not with the E-BR. Comparison with a disease signature database validated an indication of the W-BR for skin disorders. Moreover, W-BR treatment showed the wound-healing effect in skin and lung cells. The main active ingredients of BR showed only the anti-cancer effect of the E-BR and not the wound healing effect of the W-BR, suggesting the need for research on minor ingredients of BR.

5.
Plants (Basel) ; 11(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35406976

RESUMO

Effective treatments for patients experiencing temperature-related symptoms are limited. The hot and cold effects of traditional herbal medicines have been utilized to treat and manage these symptoms, but their molecular mechanisms are not fully understood. Previous studies with arbitrarily selected herbs and ingredients may have produced biased results. Here, we aim to systematically elucidate the molecular mechanisms of the hot and cold properties of herbal medicines through an unbiased large-scale investigation of herbal ingredients, their target genes, and the transcriptome signatures induced by them. Using data regarding 243 herbs retrieved from two herbal medicine databases, we statistically identify (R)-Linalool, (-)-alpha-pinene, peruviol, (L)-alpha-terpineol, and cymol as five new hot-specific ingredients that share a common target, a norepinephrine transporter. However, no significant ingredients are cold-specific. We also statistically identify 14 hot- and 8 cold-specific new target genes. Pathway enrichment analysis of hot-specific target genes reveals the associated pathways including neurotransmitter reuptake, cold-induced thermogenesis, blood pressure regulation, adrenergic receptor signaling, and cation symporter activity. Cold-specific target genes are associated with the steroid pathway. Transcriptome analysis also shows that hot herbs are more strongly associated with coagulation and synaptic transmission than cold herbs. Our results, obtained from novel connections between herbal ingredients, target genes, and pathways, may contribute to the development of pharmacological treatment strategies for temperature-related pain using medicinal plants.

6.
Biomed Pharmacother ; 148: 112748, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35219117

RESUMO

Paeoniae Radix (PR) has a great therapeutic value in many clinical applications; however, the presence of various bioactive compounds and its complicated effects on human health makes its precise mechanisms of action unclear. This study investigated the effects of PR at the molecular pathway level by profiling genome-wide gene expression changes following dose-dependent treatment of human lung cancer cells (A549) with PR water extract (WPR), PR ethanol extracts (EPR), as well as their individual components. We found that PR exerts anticancer effects in A549 cells by regulating numerous pathways. Specifically, EPR and two compounds, namely, hederagenin (HG) and oleanolic acid (OA), significantly downregulate the Aurora B pathway. Furthermore, we generated an integrated PR extracts-compounds-target genes network in the Aurora B pathway to understand their interactions. Our findings reinforce that inhibiting Aurora kinase activity is a therapeutic target for treating cancers, providing the potential for novel mechanisms of action for PR and its components against lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares/patologia , Paeonia/química , Extratos Vegetais/farmacologia , Células A549 , Aurora Quinase B/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/metabolismo , Raízes de Plantas/química
7.
Molecules ; 23(11)2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400597

RESUMO

Asthma, a heterogeneous disease of the airways, is common around the world, but little is known about the molecular mechanisms underlying the interactions between DNA methylation and gene expression in relation to this disease. The seeds of Descurainia sophia are traditionally used to treat coughs, asthma and edema, but their effects on asthma have not been investigated by multi-omics analysis. We undertook this study to assess the epigenetic effects of ethanol extract of D. sophia seeds (DSE) in an ovalbumin (OVA)-induced mouse model of asthma. We profiled genome-wide DNA methylation by Methyl-seq and characterized the transcriptome by RNA-seq in mouse lung tissue under three conditions: saline control, OVA-induced, and DSE-treated. In total, 1995 differentially methylated regions (DMRs) were identified in association with anti-asthmatic effects, most in promoter and coding regions. Among them, 25 DMRs were negatively correlated with the expression of the corresponding 18 genes. These genes were related to development of the lung, respiratory tube and respiratory system. Our findings provide insights into the anti-asthmatic effects of D. sophia seeds and reveal the epigenetic targets of anti-inflammatory processes in mice.


Assuntos
Antiasmáticos/farmacologia , Brassicaceae/química , Epigênese Genética/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sementes/química , Animais , Antiasmáticos/química , Asma/tratamento farmacológico , Asma/imunologia , Asma/patologia , Biologia Computacional/métodos , Metilação de DNA , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Ovalbumina/efeitos adversos , Ovalbumina/imunologia , Extratos Vegetais/química , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA