Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Res ; 29(1): 106, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326876

RESUMO

Scientists have been compelled to search for alternative treatments due to the increasing prevalence of chemoresistance as well as the agonising and distressing side effects of both chemotherapy and radiation. Plant extracts have been exploited to treat various medical conditions for ages. Considering this fact, the main focus of various recent studies that are being conducted to find new and potent anticancer drugs involves the identification and utilisation of potential therapeutic chemicals present in plant extracts. Koetjapic acid (KJA), which belongs to the family of triterpenes, is primarily isolated from Sandoricum koetjape. Ongoing investigations into its therapeutic applications have revealed its tendency to impede the growth and proliferation of cancer cells. Koetjapic acid activates the intrinsic apoptotic pathway and promotes the death of cancer cells. Moreover, it inhibits angiogenesis and the dissemination of tumour (metastasis) by targeting the VEGF signalling cascade. Therefore, this study aims to elucidate the underlying mechanism of anticancer activity of koetjapic acid, providing significant insight into the compound's potential as an anticancer agent.


Assuntos
Antineoplásicos , Triterpenos , Humanos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/química , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Extratos Vegetais/farmacologia
2.
Biomed Pharmacother ; 165: 115039, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37364476

RESUMO

Maytansine is a pharmacologically active 19-membered ansamacrolide derived from various medicinal plants and microorganisms. Among the most studied pharmacological activities of maytansine over the past few decades are anticancer and anti-bacterial effects. The anticancer mechanism of action is primarily mediated through interaction with the tubulin thereby inhibiting the assembly of microtubules. This ultimately leads to decreased stability of microtubule dynamics and cause cell cycle arrest, resulting in apoptosis. Despite its potent pharmacological effects, the therapeutic applications of maytansine in clinical medicine are quite limited due to its non-selective cytotoxicity. To overcome these limitations, several derivatives have been designed and developed mostly by modifying the parent structural skeleton of maytansine. These structural derivatives exhibit improved pharmacological activities as compared to maytansine. The present review provides a valuable insight into maytansine and its synthetic derivatives as anticancer agents.


Assuntos
Antineoplásicos , Maitansina , Maitansina/farmacologia , Maitansina/uso terapêutico , Microtúbulos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Tubulina (Proteína)/metabolismo
3.
Oxid Med Cell Longev ; 2022: 8615242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509838

RESUMO

Bergapten (BP) or 5-methoxypsoralen (5-MOP) is a furocoumarin compound mainly found in bergamot essential oil but also in other citrus essential oils and grapefruit juice. This compound presents antibacterial, anti-inflammatory, hypolipemic, and anticancer effects and is successfully used as a photosensitizing agent. The present review focuses on the research evidence related to the therapeutic properties of bergapten collected in recent years. Many preclinical and in vitro studies have been evidenced the therapeutic action of BP; however, few clinical trials have been carried out to evaluate its efficacy. These clinical trials with BP are mainly focused on patients suffering from skin disorders such as psoriasis or vitiligo. In these trials, the administration of BP (oral or topical) combined with UV irradiation induces relevant lesion clearance rates. In addition, beneficial effects of bergamot extract were also observed in patients with altered serum lipid profiles and in people with nonalcoholic fatty liver. On the contrary, there are no clinical trials that investigate the possible effects on cancer. Although the bioavailability of BP is lower than that of its 8-methoxypsoralen (8-MOP) isomer, it has fewer side effects allowing higher concentrations to be administered. In conclusion, although the use of BP has therapeutic applications on skin disorders as a sensitizing agent and as components of bergamot extract as hypolipemic therapy, more trials are necessary to define the doses and treatment guidelines and its usefulness against other pathologies such as cancer or bacterial infections.


Assuntos
Metoxaleno , Óleos Voláteis , 5-Metoxipsoraleno , Humanos , Metoxaleno/efeitos adversos , Fármacos Fotossensibilizantes , Extratos Vegetais , Raios Ultravioleta
4.
Oxid Med Cell Longev ; 2022: 8214821, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198096

RESUMO

Crocus species are mainly distributed in North Africa, Southern and Central Europe, and Western Asia, used in gardens and parks as ornamental plants, while Crocus sativus L. (saffron) is the only species that is cultivated for edible purpose. The use of saffron is very ancient; besides the use as a spice, saffron has long been known also for its medical and coloring qualities. Due to its distinctive flavor and color, it is used as a spice, which imparts food preservative activity owing to its antimicrobial and antioxidant activity. This updated review discusses the biological properties of Crocus sativus L. and its phytoconstituents, their pharmacological activities, signaling pathways, and molecular targets, therefore highlighting it as a potential herbal medicine. Clinical studies regarding its pharmacologic potential in clinical therapeutics and toxicity studies were also reviewed. For this updated review, a search was performed in the PubMed, Science, and Google Scholar databases using keywords related to Crocus sativus L. and the biological properties of its phytoconstituents. From this search, only the relevant works were selected. The phytochemistry of the most important bioactive compounds in Crocus sativus L. such as crocin, crocetin, picrocrocin, and safranal and also dozens of other compounds was studied and identified by various physicochemical methods. Isolated compounds and various extracts have proven their pharmacological efficacy at the molecular level and signaling pathways both in vitro and in vivo. In addition, toxicity studies and clinical trials were analyzed. The research results highlighted the various pharmacological potentials such as antimicrobial, antioxidant, cytotoxic, cardioprotective, neuroprotective, antidepressant, hypolipidemic, and antihyperglycemic properties and protector of retinal lesions. Due to its antioxidant and antimicrobial properties, saffron has proven effective as a natural food preservative. Starting from the traditional uses for the treatment of several diseases, the bioactive compounds of Crocus sativus L. have proven their effectiveness in modern pharmacological research. However, pharmacological studies are needed in the future to identify new mechanisms of action, pharmacokinetic studies, new pharmaceutical formulations for target transport, and possible interaction with allopathic drugs.


Assuntos
Crocus/química , Compostos Fitoquímicos/farmacologia , Animais , Humanos , Medicina Tradicional , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico
5.
Oxid Med Cell Longev ; 2022: 6025900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154569

RESUMO

The use of phytochemicals is gaining interest for the treatment of metabolic syndromes over the synthetic formulation of drugs. Senna is evolving as one of the important plants which have been vastly studied for its beneficial effects. Various parts of Senna species including the root, stem, leaves, and flower are found rich in numerous phytochemicals. In vitro, in vivo, and clinical experiments established that extracts from Senna plants have diverse beneficial effects by acting as a strong antioxidant and antimicrobial agent. In this review, Senna genus is comprehensively discussed in terms of its botanical characteristics, traditional use, geographic presence, and phytochemical profile. The bioactive compound richness contributes to the biological activity of Senna plant extracts. The review emphasizes on the in vivo and in vitro antioxidant and anti-infectious properties of the Senna plant. Preclinical studies confirmed the beneficial effects of the Senna plant extracts and its bioactive components in regard to the health-promoting activities. The safety, side effects, and therapeutic limitations of the Senna plant are also discussed in this review. Additional research is necessary to utilize the phenolic compounds towards its use as an alternative to pharmacological treatments and even as an ingredient in functional foods.


Assuntos
Anti-Infecciosos/efeitos adversos , Antioxidantes/efeitos adversos , Compostos Fitoquímicos/efeitos adversos , Extratos Vegetais/efeitos adversos , Plantas Medicinais/química , Senna/química , Animais , Etnofarmacologia/métodos , Humanos , Medicina Tradicional/efeitos adversos , Fitoterapia/efeitos adversos , Componentes Aéreos da Planta/química , Raízes de Plantas/química
6.
Crit Rev Food Sci Nutr ; 62(16): 4449-4464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33491467

RESUMO

Flavonoids are common in the plant kingdom and many of them have shown a wide spectrum of bioactive properties. Hesperetin (Hst), the aglycone form of hesperidin, is a great example, and is the most abundant flavonoid found in Citrus plants. This review aims to provide an overview on the in vitro, in vivo and clinical studies reporting the Hst pharmacological effects and to discuss the bioavailability-related issues. Preclinical studies have shown promising effects on cancer, cardiovascular diseases, carbohydrate dysregulation, bone health, and other pathologies. Clinical studies have supported the Hst promissory effects as cardioprotective and neuroprotective agent. However, further well-designed clinical trials are needed to address the other Hst effects observed in preclinical trials, as well as to a more in-depth understanding of its safety profile.


Assuntos
Citrus , Hesperidina , Antioxidantes/farmacologia , Disponibilidade Biológica , Flavonoides , Hesperidina/farmacologia , Hesperidina/uso terapêutico
7.
Oxid Med Cell Longev ; 2021: 1131280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471461

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder, where social and communication deficits and repetitive behaviors are present. Plant-derived bioactives have shown promising results in the treatment of autism. In this sense, this review is aimed at providing a careful view on the use of plant-derived bioactive molecules for the treatment of autism. Among the plethora of bioactives, curcumin, luteolin, and resveratrol have revealed excellent neuroprotective effects and can be effectively used in the treatment of neuropsychological disorders. However, the number of clinical trials is limited, and none of them have been approved for the treatment of autism or autism-related disorder. Further clinical studies are needed to effectively assess the real potential of such bioactive molecules.


Assuntos
Transtorno do Espectro Autista/dietoterapia , Plantas/química , Humanos
8.
Oxid Med Cell Longev ; 2021: 2195902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447485

RESUMO

Cardiovascular diseases (CVD) are one of the main causes of mortality in the world. The development of these diseases has a specific factor-alteration in blood platelet activation. It has been shown that phenolic compounds have antiplatelet aggregation abilities and a positive impact in the management of CVD, exerting prominent antioxidant, anti-inflammatory, antitumor, cardioprotective, antihyperglycemic, and antimicrobial effects. Thus, this review is intended to address the antiplatelet activity of phenolic compounds with special emphasis in preventing CVD, along with the mechanisms of action through which they are able to prevent and treat CVD. In vitro and in vivo studies have shown beneficial effects of phenolic compound-rich plant extracts and isolated compounds against CVD, despite that the scientific literature available on the antiplatelet aggregation ability of phenolic compounds in vivo is scarce. Thus, despite the current advances, further studies are needed to confirm the cardioprotective potential of phenolic compounds towards their use alone or in combination with conventional drugs for effective therapeutic interventions.


Assuntos
Doenças Cardiovasculares , Fenóis , Compostos Fitoquímicos , Inibidores da Agregação Plaquetária , Agregação Plaquetária/efeitos dos fármacos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Humanos , Fenóis/química , Fenóis/uso terapêutico , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA