Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 21(3): 497-505, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36382992

RESUMO

Reducing the saturate content of vegetable oils is key to increasing their utility and adoption as a feedstock for the production of biofuels. Expression of either the FAT5 16 : 0-CoA desaturase from Caenorhabditis elegans, or an engineered cyanobacterial 16 : 0/18 : 0-glycerolipid desaturase, DES9*, in seeds of Arabidopsis (Arabidopsis thaliana) substantially lowered oil saturates. However, because pathway fluxes and regulation of oil synthesis are known to differ across species, translating this transgene technology from the model plant to crop species requires additional investigation. In the work reported here, we found that high expression of FAT5 in seeds of camelina (Camelina sativa) provided only a moderate decrease in saturates, from 12.9% of total oil fatty acids in untransformed controls to 8.6%. Expression of DES9* reduced saturates to 4.6%, but compromised seed physiology and oil content. However, the coexpression of the two desaturases together cooperatively reduced saturates to only 4.0%, less than one-third of the level in the parental line, without compromising oil yield or seedling germination and establishment. Our successful lowering of oil saturates in camelina identifies strategies that can now be integrated with genetic engineering approaches that reduce polyunsaturates to provide optimized oil composition for biofuels in camelina and other oil seed crops.


Assuntos
Arabidopsis , Brassicaceae , Biocombustíveis , Plantas Geneticamente Modificadas/genética , Brassicaceae/genética , Arabidopsis/genética , Ácidos Graxos/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Sementes/genética , Óleos de Plantas/metabolismo
2.
Plant J ; 98(1): 33-41, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30536486

RESUMO

Producing healthy, high-oleic oils and eliminating trans-fatty acids from foods are two goals that can be addressed by reducing activity of the oleate desaturase, FAD2, in oilseeds. However, it is essential to understand the consequences of reducing FAD2 activity on the metabolism, cell biology and physiology of oilseed crop plants. Here, we translate knowledge from studies of fad2 mutants in Arabidopsis (Arabidopsis thaliana) to investigate the limits of non-GMO approaches to maximize oleic acid in the seed oil of canola (Brassica napus), a species that expresses three active FAD2 isozymes. A series of hypomorphic and null mutations in the FAD2.A5 isoform were characterized in yeast (Saccharomyes cerevisiae). Then, four of these were combined with null mutations in the other two isozymes, FAD2.C5 and FAD2.C1. The resulting mutant lines contained 71-87% oleic acid in their seed oil, compared with 62% in wild-type controls. All the mutant lines grew well in a greenhouse, but in field experiments we observed a clear demarcation in plant performance. Mutant lines containing less than 80% oleate in the seed oil were indistinguishable from wild-type controls in growth parameters and seed oil content. By contrast, lines with more than 80% oleate in the seed oil had significantly lower seedling establishment and vigor, delayed flowering and reduced plant height at maturity. These lines also had 7-11% reductions in seed oil content. Our results extend understanding of the B. napusFAD2 isozymes and define the practical limit to increasing oil oleate content in this crop species.


Assuntos
Brassica napus/genética , Ácidos Graxos Dessaturases/metabolismo , Ácido Oleico/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Óleos de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica napus/metabolismo , Produtos Agrícolas , Ácidos Graxos Dessaturases/genética , Isoenzimas , Mutação com Perda de Função , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sementes/genética , Sementes/metabolismo
3.
Biotechnol Bioeng ; 113(7): 1522-30, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26724425

RESUMO

Directed evolution of a cyanobacterial Δ9 fatty acid desaturase (DSG) from Synechococcus elongatus, PCC6301 created new, more productive desaturases and revealed the importance of certain amino acid residues to increased desaturation. A codon-optimized DSG open reading frame with an endoplasmic-reticulum retention/retrieval signal appended was used as template for random mutagenesis. Increased desaturation was detected using a novel screen based on complementation of the unsaturated fatty acid auxotrophy of Saccharomyces cerevisiae mutant ole1Δ. Amino acid residues whose importance was discovered by the random processes were further examined by saturation mutation to determine the best amino acid at each identified location in the peptide chain and by combinatorial analysis. One frequently-detected single amino acid change, Q240R, yielded a nearly 25-fold increase in total desaturation in S. cerevisiae. Several other variants of the protein sequence with multiple amino acid changes increased total desaturation more than 60-fold. Many changes leading to increased desaturation were in the vicinity of the canonical histidine-rich regions known to be critical for electron transfer mediated by these di-iron proteins. Expression of these evolved proteins in the seed of Arabidopsis thaliana altered the fatty acid composition, increasing monounsaturated fatty acids and decreasing the level of saturated fatty acid, suggesting a potential application of these desaturases in oilseed crops. Biotechnol. Bioeng. 2016;113: 1522-1530. © 2016 Wiley Periodicals, Inc.


Assuntos
Cianobactérias/enzimologia , Evolução Molecular Direcionada/métodos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/química , Ácidos Graxos/genética , Óleos de Plantas/análise , Óleos de Plantas/química , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA