Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-25945102

RESUMO

Triptolide (TPL) has been shown to inhibit cell proliferation and induce apoptosis in various human cancer cells; however, the precise mechanism of apoptosis induced by TPL in human melanoma cells has not yet been elucidated. In this study, we investigated the precise mechanism underlying cytocidal effects of TPL on human melanoma cells. Treatment of human melanoma cells with TPL significantly inhibited cell growth and induced apoptosis, as evidenced by flow cytometry and annexin V-fluorescein isothiocyanate analyses. TPL increased the levels of Fas and Fas-associated death domain (FADD) and induced cleavage of Bid by activation of caspase-8 and cytochrome c release from mitochondria to the cytosol, which resulted in activation of caspase-9 and caspase-3. Moreover, TPL-induced apoptosis in SK-MEL-2 cells was mediated through dephosphorylation of focal adhesion kinase (FAK) and its cleavage by caspase-8-mediated caspase-3 activation via upregulation of Fas expression. We also found that TPL mediated the dissociation of receptor-interacting protein (RIP) from FAK and enhanced the formation of RIP/Fas complex formation initiating cell death. In conclusion, our data firstly demonstrated that TPL induces apoptosis by both extrinsic and intrinsic apoptosis pathways in human melanoma cells and identified that RIP shuttles between Fas and FAK to mediate apoptosis.

2.
Indian J Biochem Biophys ; 49(2): 86-91, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22650004

RESUMO

In this study, the effect of cordycepin (3'-deoxyadenosine), a major component of Cordyceps militaris, an ingredient of traditional Chinese medicine was investigated for the first time on apoptotsis in human neuroblastoma SK-N-BE(2)-C and melanoma SK-MEL-2 cells. Cordycepin significantly inhibited the proliferation of human neuroblastoma SK-N-BE(2)-C and human melanoma SK-MEL-2 cells with IC50 values of 120 microM and 80 microM, respectively. Cordycepin treatment at 120 microM and 80 microM, respectively, induced apoptosis in both cells and caused the increase of cell accumulation in a time-dependent manner at the apoptotic sub-G1 phase, as evidenced by the flow cytometry (FCM) and annexin V-fluorescein isothiocyanate (FITC) analyses. Western blot analysis revealed the induction of active caspase-3 and poly(ADP-ribose)polymerase (PARP) cleavage by cordycepin treatment. These results suggest that cordycepin is a potential candidate for cancer therapy of neuroblastoma and melanoma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Melanoma/patologia , Neuroblastoma/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA