RESUMO
BACKGROUND: Calotropis gigantea (CG) is a tall and waxy flower that is used as a traditional remedy for fever, indigestion, rheumatism, leprosy, and leukoderma. However, the precise mechanisms of its anticancer effects have not yet been examined in human non-small cell lung cancer (NSCLC) cells. In this study, we investigated whether CG extract exerted an apoptotic effect in A549 and NCI-H1299 NSCLC cells. METHODS: The ethanol extract of CG was prepared, and its apoptotic effects on A549 and NCI-H1299 NSCLC cells were assessed by using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining, cell cycle analysis, real-time polymerase chain reaction (RT-PCR), western blotting, JC-1 staining, and ROS detection assay. RESULTS: The CG extract induced apoptosis through the stimulation of intrinsic and extrinsic signaling pathways in A549 and NCI-H1299 lung cancer cells. Cell cycle arrest was induced by the CG extract in both cell lines. Reactive oxygen species (ROS), which can induce cell death, were also generated in the CG-treated A549 and NCI-H1299 cells. CONCLUSIONS: These data confirmed that CG caused apoptosis through the activation of extrinsic and intrinsic pathways, cell cycle arrest, and ROS generation in A549 and NCI-H1299 lung cancer cells. Thus, CG can be suggested as a potential agent for lung cancer therapy.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Calotropis/química , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologiaRESUMO
BACKGROUND: Orientin (luteolin 8-C-ß-D-glucopyranoside), a glycosyl dietary flavonoid, has therapeutic effects such as anti-inflammation and antiadipogenesis. However, there is little known about the antimigratory and anti-invasive effects of orientin. Thus, we demonstrate the anti-invasive effects of orientin compared with well-known anticancer flavonoid, luteolin and luteolin 8-C-ß-fucopyranoside (LU8C-FP). PURPOSE: We investigated whether orientin would inhibit the migration and invasion of 12-O-tetradecanoyl phorbol-13-acetate (TPA) induced MCF-7 breast cancer cells. METHODS: We investigated the anti-invasive mechanism of orientin by using wound-healing assay, Matrigel invasion assay, gelatin zymography, qRT-PCR, ELISA, western blotting, nuclear, membrane and cytosolic fractionations, and immunofluorescence staining in MCF-7 cell line. RESULTS: We demonstrated the antimigratory and anti-invasive effects of orientin in TPA-treated MCF-7 cells. TPA-induced membrane translocation of protein kinase C alpha (PKCα), phosphorylation of extracellular signal regulated kinase (ERK), and nuclear translocations of activator protein-1 (AP-1) and signal transducer and activator of transcription 3 (STAT3) were downregulated by orientin. In addition, orientin also inhibited matrix metalloproteinase-9 (MMP-9) and interleukin-8 (IL-8) expression. CONCLUSION: Orientin inhibits migratory and invasive responses by suppressing MMP-9 and IL-8 expression through mitigation of TPA-induced PKCα and ERK activation, as well as the nuclear translocation of AP-1 and STAT3. Therefore, orientin prevents tumor invasion and could be applied as a possible therapeutic agent for the treatment of cancer metastasis.
Assuntos
Neoplasias da Mama/metabolismo , Flavonoides/farmacologia , Glucosídeos/farmacologia , Interleucina-8/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Transdução de Sinais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Luteolina/farmacologia , Células MCF-7 , Proteína Quinase 6 Ativada por Mitógeno , NF-kappa B/metabolismo , Invasividade Neoplásica , Proteína Quinase C-alfa/metabolismo , Fator de Transcrição STAT3/metabolismo , Acetato de Tetradecanoilforbol , Análise Serial de Tecidos , Fator de Transcrição AP-1/metabolismoRESUMO
7-Methoxy-luteolin-8-C-ß-6-deoxy-xylo-pyranos-3-uloside (mLU8C-PU) is a glycosylflavone of luteolin isolated from Arthraxon hispidus (Thunb.). Luteolin is known to exert anti-migratory and anti-invasive effects on tumor cells. However, there are no reports on the effects of mLU8C-PU on tumor invasiveness and associated signaling pathways. In this study, we demonstrated the anti-migratory and anti-invasive effects of mLU8C-PU in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 breast cancer cells. We also investigated the effect of mLU8C-PU on invasion- related signal transducers, including protein kinase Cα (PKCα), c-Jun N terminal kinase (JNK), activator protein-1 (AP-1), and nuclear factor-kappa B (NF-ĸB). TPA-induced membrane translocation of PKCα, phosphorylation of JNK, and the nuclear translocations of AP-1 and NF-κB were downregulated by mLU8C-PU in MCF-7 cells. In addition, mLU8C-PU also inhibited matrix metalloproteinase-9 (MMP-9) and interleukin-8 (IL-8) expression. These results indicate that mLU8C-PU inhibits migratory and invasive responses in MCF-7 breast cancer cells by suppressing MMP-9 and IL-8 expression through mitigating TPA-induced PKCα, JNK activation, and the nuclear translocation of AP-1 and NF-κB. These results suggest that mLU8C-PU may be used as an anti-metastatic agent.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Luteolina/farmacologia , Poaceae/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Neoplasias da Mama/metabolismo , Adesão Celular/genética , Movimento Celular/genética , Regulação para Baixo/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Luteolina/química , Luteolina/isolamento & purificação , Células MCF-7 , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genéticaRESUMO
Chemotherapy is a standard treatment for non-small-cell lung cancer (NSCLC). However, the dose-limiting toxicity of drugs and the development of chemoresistance are major clinical challenges to successful management of NSCLC. Asian traditional medicine is gaining global attention as a non-toxic alternative to chemotherapy. BRM270 is an extract formulated from seven Asian medicinal plants that has been shown to inhibit tumor cell proliferation in diverse cancer types. We previously demonstrated that BRM270 suppresses tumorigenesis by negatively regulating nuclear factor-κB signaling in multidrug-resistant cancer stem cells (CSCs). In this study we report that the growth, migration, and invasion of normal human lung adenocarcinoma cells and their chemoresistant derivatives was inhibited by BRM270 treatment. Notably, BRM270 was found to modulate CSC self-renewal and tumor-initiating capacity via positive regulation of the miRNA-128. Thus, combination therapy with miRNA-128 and BRM270 may be an effective treatment strategy for chemoresistant NSCLC.
Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/genética , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , MicroRNAs/agonistas , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Fargesin is a lignan from Magnolia fargesii, an oriental medicine used in the treatment of nasal congestion and sinusitis. The anti-inflammatory properties of this compound have not been fully elucidated yet. PURPOSE: This study focused on assessing the anti-inflammatory effects of fargesin on phorbal ester (PMA)-stimulated THP-1 human monocytes, and the molecular mechanisms underlying them. METHODS: Cell viability was evaluated by MTS assay. Protein expression levels of inflammatory mediators were analyzed by Western blotting, ELISA, Immunofluorescence assay. mRNA levels were measured by Real-time PCR. Promoter activities were elucidated by Luciferase assay. RESULTS: It was found that pre-treatment with fargesin attenuated significantly the expression of two major inflammatory mediators, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Fargesin also inhibited the production of pro-inflammation cytokines (IL-1ß, TNF-α) and chemokine (CCL-5). Besides, nuclear translocation of transcription factors nuclear factor-kappa B (NF-ĸB) and activator protein-1 (AP-1), which regulate multiple pro-inflammatory genes, was suppressed by fargesin in a PKC-dependent manner. Furthermore, among the mitogen-activated protein kinases (MAPKs), only c-Jun N-terminal kinase (JNK) was downregulated by fargesin in a PKC-dependent manner, and this reduction was involved in PMA-induced AP-1 and NF-ĸB nuclear translocation attenuation, demonstrated using a specific JNK inhibitor. CONCLUSION: Taken together, our results found that fargesin exhibits anti-inflammation effects on THP-1 cells via suppression of PKC pathway including downstream JNK, nuclear factors AP-1 and NF-ĸB. These results suggest that fargesin has anti-inflammatory properties with potential applications in drug development against inflammatory disorders.
Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Lignanas/uso terapêutico , Magnolia/química , Monócitos/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Humanos , Inflamação/metabolismo , Camundongos , FitoterapiaRESUMO
BACKGROUND: Cervical cancer is the second most common cancer in females. Recent reports have revealed the critical role of cervical cancer stem cells (CSCs) in tumorigenicity and metastasis. Previously we demonstrated that A1E exerts an anti-proliferative action, which inhibits the growth of cervical cancer cells. METHODS: A1E is composed of 11 oriental medicinal herbs. Cervical cancer cell culture, wund healing and invasion assay, flow cytometry, sheroid formation assay, and wstern blot assays were performed in HPV 16-positive SiHa cell and HPV 16-negative C33A cells. RESULTS: A1E targets the E6 and E7 oncogenes; thus, A1E significantly inhibited proliferation of human papilloma virus (HPV) 16-positive SiHa cells, it did not inhibit the proliferation of HPV-negative C33A cells. Accordingly, we investigated whether A1E can regulate epithelial-to-mesenchymal transition (EMT), CSC self-renewal, and stemness-related gene expression in cervical cancer cells. Down rgulation of cell migration, cell invasion, and EMT was observed in A1E-treated SiHa cells. Specifically, A1E-treated SiHa cells showed significant decreases in OCT-3/4 and Sox2 expression levels and in sphere formation. Moreover, CSCs makers ALDH+ and ALDH, CD133 double positive cell were significantly decreased in A1E-treated SiHa cells. However, A1E treatment did not down regulate ALDH+ expression and the number of ALDH/CD133 double positive cells in C33A cells. CONCLUSIONS: Taken together, A1E can inhibit CSCs and reduce the expression of stemness markers. Treating CSCs with A1E may be a potential therapy for cervical cancer.
Assuntos
Papillomavirus Humano 16/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Infecções por Papillomavirus/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Plantas Medicinais/químicaRESUMO
Wogonin is a flavonoid compound extracted from Scutellaria baicalensis and is well known as a benzodiazepine receptor ligand with anxiolytic effects. Many recent studies have demonstrated that wogonin modulates angiogenesis, proliferation, invasion, and tumor progress in various cancer tissues. We further explored the mechanism of action of wogonin on cervical cancer cells that contain or lack human papillomavirus (HPV) DNA. Wogonin was cytotoxic to HPV 16 (+) cervical cancer cells, SiHa and CaSki, but not to HPV-negative cells. We demonstrated that wogonin induced apoptosis by suppressing the expressions of the E6 and E7 viral oncogenes in HPV-infected cervical cancer CaSki and SiHa cells. The modulation of p53 and protein retinoblastoma (pRb) were also triggered by the suppression of E6 and E7 expressions. However, p53 was not altered in HPV-negative cervical cancer C33A cells. Moreover, wogonin modulated the mitochondrial membrane potential and the expression of pro- and anti-apoptotic factors such as Bax and Bcl-2. Wogonin also provoked the cleavage of caspase-3, caspase-9, and poly ADP ribose polymerase. After transfection of siRNAs to target E6 and E7, additional restoration of p53 and pRb was not induced, but processing of caspases and PARP was increased compared with wogonin treatment alone. Together, our findings demonstrated that wogonin effectively promotes apoptosis by downregulating E6 and E7 expressions and promoting intrinsic apoptosis in human cervical cancer cells.
Assuntos
Apoptose/efeitos dos fármacos , Flavanonas/farmacologia , Proteínas Oncogênicas Virais/biossíntese , Proteínas E7 de Papillomavirus/biossíntese , Proteínas Repressoras/biossíntese , Neoplasias do Colo do Útero/tratamento farmacológico , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Flavonoides/farmacologia , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/tratamento farmacológico , Extratos Vegetais/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Proteínas Repressoras/genética , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/virologiaRESUMO
It has been reported that extracts from Asian traditional/medical herbs possess therapeutic agents against cancers, metabolic diseases, inflammatory diseases, and other intractable diseases. In this study, we assessed the molecular mechanisms involved in the anticancer effects of A1E, the extract of Korean medicinal herbs. We examined the role of the cytotoxic and apoptotic pathways in the cancer chemopreventive activity in non-small-cell lung cancer (NSCLC) cell lines NCI-H460 and NCI-H1299. A1E inhibited the proliferation of NCI-H460 more efficiently than NCI-H1299 (p53(-/-)) cells. The apoptosis was detected by nuclear morphological changes, annexin V-FITC/PI staining, cell cycle analysis, western blot, RT-PCR, and measurement of mitochondrial membrane potential. A1E induced cellular morphological changes and nuclear condensation at 24 h in a dose-dependent manner. A1E also perturbed cell cycle progression at the sub-G1 stage and altered cell cycle regulatory factors in NCI-H460 cells. Furthermore, A1E inhibited the PI3K/Akt and NF-κB survival pathways, and it activated apoptotic intrinsic and extrinsic pathways. A1E increased the expression levels of members of the extrinsic death receptor complex FasL and FADD. In addition, A1E treatment induced cleavage of caspase-8, caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), whereas the expression levels of Bcl-2 and Bcl-xl were downregulated. A1E induced mitochondrial membrane potential collapse and cytochrome C release. Our results suggest that A1E induces apoptosis via activation of both extrinsic and intrinsic pathways and inhibition of PI3K/Akt survival signaling pathways in NCI-H460 cells. In conclusion, these data demonstrate the potential of A1E as a novel chemotherapeutic agent in NSCLC.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/toxicidade , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Plantas Medicinais , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
A sesquiterpene glycoside, cadin-2-en-1ß-ol-1ß-D-glucuronopyranoside (known as CR4-1), was isolated from Catharanthus roseus (Apocynaceae) hairy root cultures. C. roseus is widely used as an ornamental and medicinal plant and is cultivated mainly for its alkaloids. C. roseus has been reported to have pharmacologic properties such as anti-cancer, enzymatic anti-oxidant, and anti-diabetic effects. In this study, we demonstrated that CR4-1 significantly inhibited the in vitro invasion of MCF-7 human breast adenocarcinoma cells induced by 12-O-tetradecanoyl phorbol-13-acetate (TPA). Matrix metalloproteinases (MMPs) are known to be involved in cancer invasion and metastasis. Zymographic analysis showed that CR4-1 suppressed TPA-induced MMP-9 activity in a dose-dependent manner. We further demonstrated that CR4-1 suppressed the phosphorylation of extracellular signal-regulated protein kinase, but not p38 kinase or c-Jun N-terminal kinase (JNK). Moreover, CR4-1 attenuated TPA-induced degradation of κBα inhibitor (IκB-α). These results suggest that CR4-1 reduces the invasiveness of human cancer cells by suppressing MMP-9 expression through inhibition of the NF-κB signaling pathways.