Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Deliv ; 29(1): 2579-2591, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35915055

RESUMO

Benign prostatic hyperplasia (BPH) is a nonmalignant growth of the prostate tissue and causes urinary tract symptoms. To provide effective treatment, tamsulosin (TM), saw palmetto oil (SP), and pumpkin seed oil (PSO) were combined and fabricated a nanostructured lipid carrier (NLC) as TM-S/P-NLC using experimental design. The purpose was to enhance the permeation and therapeutic activity of TM; combining TM with SP and PSO in an NLC generates a synergistic activity. An optimized TM-S/P-NLC was obtained after statistical analysis, and it had a particle size, percentage of entrapment efficiency, and steady-state flux of 102 nm, 65%, and 4.5 µg/cm2.min, respectively. Additionally, the optimized TM-S/P-NLC had spherical particles with a more or less uniform size and a stability score of 95%, indicating a high level of stability. The in vitro release studies exhibited the optimized TM-S/P-NLC had the maximum release profile for TM (81 ± 4%) as compared to the TM-NLCs prepared without the addition of S/P oil (59 ± 3%) or the TM aqueous suspension (30 ± 5%). The plasma TM concentration-time profile for the TM-S/P-NLC and the marketed TM tablets indicated that when TM was supplied in a TM-S/P-NLC, the pharmacokinetic profile of the drug was improved. Simultaneously, in vivo therapeutic efficacy studies also showed favorable results for the TM-S/P-NLC in terms of the prostate weight and prostate index following treatment of BPH. Based on the findings of present study, we suggest that in the future, the TM-S/P-NLC could be a novel drug delivery system for treating BPH.


Assuntos
Cucurbita , Nanoestruturas , Hiperplasia Prostática , Portadores de Fármacos/farmacocinética , Excipientes , Humanos , Lipídeos , Masculino , Tamanho da Partícula , Extratos Vegetais , Óleos de Plantas , Hiperplasia Prostática/tratamento farmacológico , Serenoa , Tansulosina/uso terapêutico
2.
Drug Deliv ; 29(1): 254-262, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35014929

RESUMO

Candida albicans is the fungus responsible for oral candidiasis, a prevalent disease. The development of antifungal-based delivery systems has always been a major challenge for researchers. This study was designed to develop a nanostructured lipid carrier (NLC) of sesame oil (SO) loaded with miconazole (MZ) that could overcome the solubility problems of MZ and enhance its antifungal activity against oral candidiasis. In the formulation of this study, SO was used as a component of a liquid lipid that showed an improved antifungal effect of MZ. An optimized MZ-loaded NLC of SO (MZ-SO NLC) was used, based on a central composite design-based experimental design; the particle size, dissolution efficiency, and inhibition zone against oral candidiasis were chosen as dependent variables. A software analysis provided an optimized MZ-SO NLC with a particle size of 92 nm, dissolution efficiency of 88%, and inhibition zone of 29 mm. Concurrently, the ex vivo permeation rate of the sheep buccal mucosa was shown to be significantly (p < .05) higher for MZ-SO NLC (1472 µg/cm2) as compared with a marketed MZ formulation (1215 µg/cm2) and an aqueous MZ suspension (470 µg/cm2). Additionally, an in vivo efficacy study in terms of the ulcer index against C. albicans found a superior result for the optimized MZ-SO NLC (0.5 ± 0.50) in a treated group of animals. Hence, it can be concluded that MZ, through an optimized NLC of SO, can treat candidiasis effectively by inhibiting the growth of C. albicans.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase Bucal/tratamento farmacológico , Miconazol/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/química , Óleo de Gergelim/química , Animais , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Química Farmacêutica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Lipídeos/química , Masculino , Miconazol/administração & dosagem , Miconazol/farmacocinética , Mucosa Bucal , Tamanho da Partícula , Distribuição Aleatória , Ratos , Ovinos , Solubilidade , Propriedades de Superfície
3.
Drug Deliv ; 28(1): 2229-2240, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34668818

RESUMO

Fungal infections of the paranasal cavity are among the most widely spread illnesses nowadays. The aim of the current study was to estimate the effectiveness of an in situ gel loaded with voriconazole‒clove oil nano-transferosomes (VRC-CO-NT) in enhancing the activity of voriconazole against Aspergillus flavus, which causes rhinosinusitis. The nephrotoxic side effects of voriconazole may be reduced through the incorporation of the clove oil, which has antioxidant activity that protects tissue. The Box‒Behnken design was applied to formulate the VRC-CO-NT. The particle size, entrapment efficiency, antifungal inhibition zone, and serum creatinine concentration were considered dependent variables, and the soybean lecithin, VRC, and CO concentrations were considered independent ones. The final optimized formulation was loaded into a deacetylated gellan gum base and evaluated for its gelation, rheological properties, drug release profile, permeation capabilities, and in vivo nephrotoxicity. The optimum formulation was determined to be composed of 50 mg/mL lecithin, 18 mg/mL VRC, and 75 mg/mL CO, with a minimum particle size of 102.96 nm, an entrapment efficiency of 71.70%, an inhibition zone of 21.76 mm, and a serum creatinine level of 0.119 mmol/L. The optimized loaded in situ gel released 82.5% VRC after 12 hours and resulted in a 5.4-fold increase in drug permeation. The in vivo results obtained using rabbits resulted in a nonsignificant differentiation among the renal function parameters compared with the negative control group. In conclusion, nasal in situ gel loaded with VRC-CO-NT is considered an efficient novel carrier with enhanced antifungal properties with no signs of nephrotoxicity.


Assuntos
Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Óleo de Cravo/farmacologia , Nanopartículas/química , Voriconazol/farmacologia , Animais , Antifúngicos/administração & dosagem , Antifúngicos/efeitos adversos , Antifúngicos/farmacocinética , Proteínas da Membrana Bacteriana Externa , Biomarcadores , Química Farmacêutica , Óleo de Cravo/administração & dosagem , Creatinina/sangue , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Géis/química , Nefropatias/induzido quimicamente , Lipossomos/química , Seios Paranasais/metabolismo , Tamanho da Partícula , Coelhos , Reologia , Voriconazol/administração & dosagem , Voriconazol/efeitos adversos , Voriconazol/farmacocinética
4.
Drug Deliv ; 28(1): 1043-1054, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34060397

RESUMO

Herpes labialis, caused by herpes simplex virus type 1, is usually characterized by painful skin or mucosal lesions. Penciclovir (PV) tablets are found to be effective against herpes labialis but suffer from poor oral bioavailability. This study aimed to combine the benefits of PV and lavender oil (LO), which exhibits anesthetic activity, in the form of a self-nanoemulsifying drug delivery system (SNEDDS) for the treatment of herpes labialis. Toward this purpose, LO (oil), Labrasol:Labrafil M1944 CS in the ratio of 6:4 (surfactant mixture), and Lauroglycol-FCC (co-surfactant, selected based on the solubility of PV) were evaluated as the independent factors using a distance quadratic mixture design. The formulation was optimized for the minimum globule size and maximum stability index and was determined to contain 14% LO, 40.5% Labrasol:Labrafil 1944 (6:4), and 45.5% Lauroglycol-FCC. The optimized PV-LO-SNEDDS was embedded in chitosan hydrogel and the resulting formulations coded by (O3) were prepared and evaluated. The rheological studies demonstrated a combined pseudoplastic and thixotropic behavior with the highest flux of PV permeation across sheep buccal mucosa. Compared to a marketed 1% PV cream, the O3 formulation exhibited a significantly higher and sustained PV release, nearly twice the PV permeability, and a relative bioavailability of 180%. Overall, results confirm that the O3 formulation can provide an efficient delivery system for PV to reach oral mucosa and subsequent prolonged PV release. Thus, the PV-LO-SNEDDS embedded oral gel is promising and can be further evaluated in clinical settings to establish its therapeutic use in herpes labialis.


Assuntos
Guanina/farmacologia , Herpes Labial/tratamento farmacológico , Nanopartículas/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Administração Tópica , Animais , Química Farmacêutica , Quitosana/química , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Emulsões/química , Glicerídeos/química , Guanina/administração & dosagem , Guanina/farmacocinética , Hidrogéis/química , Lavandula , Masculino , Óleos Voláteis/administração & dosagem , Óleos Voláteis/efeitos adversos , Tamanho da Partícula , Óleos de Plantas/administração & dosagem , Óleos de Plantas/efeitos adversos , Ratos , Ratos Wistar , Reologia , Ovinos
5.
Drug Deliv ; 28(1): 741-751, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33840320

RESUMO

The majority of newly developed drugs need to be incorporated with delivery systems to maximize their effect and minimize side effects. Nanoemulsions (NEs) are one type of delivery system that helps to improve the solubility and dissolution of drugs, attempting to enhance their bioavailability and onset of action. The objective of this investigation was to develop an omega-3 oil-based NE loaded with loxoprofen (LXP) to enhance its dissolution, in vitro release, and mucosal penetration and decrease its mucosal ulcerative effects when applied in an oral treatment. LXP-loaded NEs were formulated with varying levels of omega-3 oil (10-30%), surfactant polyoxyethylene-C21-ethers (laureth-21) (40-60%), and co-surfactant polyethylene glycol-40 hydrogenated castor oil (HCO-40) (30-50%) using an extreme vertices mixture design. The developed NEs were characterized for globule size and drug loading capacity. The optimal formulation was tested for in vitro drug release, ex vivo permeation, and ulcer index value. The developed NE acquired a globule size ranging 71-195 nm and drug loading capacity of 43-87%. Considering the results of the in vitro release study, the optimized NE formulation achieved 2.45-fold and 2-fold increases in drug permeation across tested mucosa compared to a marketed tablet and drug aqueous dispersion, respectively. Moreover, the optimum NE exhibited the best ulcer index in comparison to drug aqueous suspension and different formulations when tested in rats. Overall, this research highlights the capacity of NEs to deliver LXP with enhanced solubility, drug release, and permeation while effectively protecting the application site from side effects of the model drug.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Ácidos Graxos Ômega-3/química , Nanopartículas/química , Fenilpropionatos/farmacologia , Odontalgia/tratamento farmacológico , Administração Tópica , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/farmacocinética , Química Farmacêutica , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Emulsões/química , Masculino , Fenilpropionatos/administração & dosagem , Fenilpropionatos/efeitos adversos , Fenilpropionatos/farmacocinética , Ratos , Ovinos , Absorção Cutânea/fisiologia , Solubilidade , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA