Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 250: 126001, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532190

RESUMO

Magnetized iron oxide nanoparticles are ideal materials for biological and biomedical applications due to their biocompatibility, super paramagnetic behavior, surface capability, and chemical stability. This research article is narrating the overview of methodologies of preparation, functionalization, characterization and applications of Fe3O4 nanoparticles. Super paramagnetic nanoparticles are studied for their hyperthermia properties. The proposed mechanism behind the hyperthermia was damaging the proteins responsible for DNA repair thereby, directly accelerating the DNA damages on cancer cells by increasing the temperature in the vicinity of the cancer cells. In this study, super paramagnetic iron oxide (Fe3O4) nanoparticles (SPIONs) and anti-cancer drug, 5-fluorouracil, functionalized with N-Hydroxysuccinimide organic molecules. A specific absorption rate at 351 nm can be achieved using UV analysis. The magnetic Fe3O4 nanoparticles had a cubic crystalline structure. FE-SEM(field emission scanning Electron microscopy) with EDAX(energy dispersive X-ray analysis) analysis shows that the size of the SPION was about 30-100 nm range and the percentage of chemical compositions was higher in the order of Fe, O, C. for particle size analysis, the SPION were positively charged derived at +9.9 mV and its conductivity is measured at 0.826 mS/cm. In-vitro anti-cancerous activity analysis in Hep-G2 cells (liver cancer cells) shows that the 5-fluorouracil functionalized SPIONs have higher inhibition rate than the bare Fe3O4 nanoparticles. The Fe3O4 nanoparticles were studied for their hyperthermic abilities at two different frequencies such as 3.05 × 106 kAm-1s-1 and 4.58 × 106 kAm-1s-1.The bare Fe3O4 at low magnetic field, 10 mg was required to raise the temperature above 42°- 45 °C and at high magnetic field, 6 mg was enough to raise the same temperature. The 5-fluorouracil functionalized Fe3O4 shows that at low magnetic field, 6 mg is required to raise the hyperthermia temperature and at high magnetic field, 3 mg is required to raise the temperature above 42°- 45 °C. the rate of heating and the temperature achieved with time can be tuned with concentrations as well as magnetic component present in the Fe3O4 nanoparticles. Beyond this concentration, the rate of cell death was observed to increase. The saturation and low residual magnetization were revealed by the magnetization analysis, making them well suited for clinical applications.


Assuntos
Hipertermia Induzida , Neoplasias Hepáticas , Nanopartículas de Magnetita , Humanos , Hipertermia Induzida/métodos , Reparo do DNA , Nanopartículas Magnéticas de Óxido de Ferro , Fluoruracila/farmacologia , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química
2.
Ecotoxicol Environ Saf ; 176: 250-257, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30939405

RESUMO

We report the synthesis, characterization, electrochemical sensing and catalytic capability of the bimetallic heterojunction Al2O3/ZnO micro flowers (AZ MFs). In order to prepare this bifunctional material, the facile hydrothermal process was adopted. The material was thoroughly characterized for the crystal structure and morphology with Powder XRD, XPS and FE-SEM. The investigation of electrochemical sensing was done using hydroquinone (HQ) and the chemical catalysis was using rhodamine B (RhB) with our bimetallic Al2O3/ZnO micro flowers as these are harmful industrial pollutants. The process parameters like the influence of scan rate and pH was efficiently optimized for the electrochemical detection of HQ and kinetics for the time dependent catalytic degradation of RhB dye. The linear relationship between the peak current and the concentration of HQ was found to be in the range of 0.125-20.25 µM with an impressive detection limit of 11.2 nM. In the chemical catalytic degradation of the RhB dye, our bimetallic material thrived well during the reaction and degraded the material in 10 min. The performance of bimetallic Al2O3/ZnO micro flowers towards HQ detection and RhB degradation shows good stability, reproducibility and it can be efficiently utilized to treat the environmental pollutants.


Assuntos
Óxido de Alumínio/química , Técnicas Eletroquímicas/instrumentação , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Óxido de Zinco/química , Catálise , Eletrodos , Hidroquinonas/análise , Limite de Detecção , Modelos Teóricos , Reprodutibilidade dos Testes , Rodaminas/análise , Propriedades de Superfície , Purificação da Água/instrumentação
3.
Biosci Biotechnol Biochem ; 71(9): 2177-83, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17827693

RESUMO

To evaluate the antitumor and cytotoxic activity of methanol extract of Phyllanthus polyphyllus (MPP) in mice and human cancer cell lines, the antitumor activity of MPP was evaluated against an Ehrlich ascites carcinoma (EAC) tumor model. The activity was assessed using survival time, hematological studies, lipid peroxidation (LPO), antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione S-transferase (GST), solid tumor mass, and short-term in vitro cytotoxicity. The cytotoxic activity of MPP was evaluated using human breast cancer (MCF7), colon cancer (HT29), and liver cancer (HepG2) cell lines Oral administration of MPP (200 and 300 mg/kg) increased the survival time and significantly reduced the solid tumor volume in a dose-dependent manner. Hematological parameters, protein, and packed cellular volume (PCV), which were altered by tumor inoculation, were restored. MPP significantly decreased the levels of LPO, GPx, GST, and significantly increased the levels of SOD and CAT. In a cytotoxicity study against human cancer cell lines, MPP was found to have IC50 values of 27, 42 and 38 microg/ml on MCF-7, HT-29, and HepG2 cells respectively. MPP possessed significant antitumor and cytotoxic activity on EAC and human cancer cell lines.


Assuntos
Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/patologia , Phyllanthus/química , Fitoterapia , Extratos Vegetais/farmacologia , Animais , Antioxidantes/metabolismo , Carcinoma de Ehrlich/metabolismo , Linhagem Celular Tumoral , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Taxa de Sobrevida , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA