Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(12)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34943080

RESUMO

Chronic inflammatory pain is present in many pathologies and diminishes the patient's quality of life. Moreover, most current treatments have a low efficacy and significant side effects. Recent studies demonstrate the analgesic properties of slow-releasing hydrogen sulfide (H2S) donors in animals with osteoarthritis or neuropathic pain, but their effects in inflammatory pain and related pathways are not completely understood. Several treatments potentiate the analgesic actions of δ-opioid receptor (DOR) agonists, but the role of H2S in modulating their effects and expression during inflammatory pain remains untested. In C57BL/6J male mice with inflammatory pain provoked by subplantar injection of complete Freund's adjuvant, we evaluated: (1) the antiallodynic and antihyperalgesic effects of different doses of two slow-releasing H2S donors, i.e., diallyl disulfide (DADS) and phenyl isothiocyanate (P-ITC) and their mechanism of action; (2) the pain-relieving effects of DOR agonists co-administered with H2S donors; (3) the effects of DADS and P-ITC on the oxidative stress and molecular changes caused by peripheral inflammation. Results demonstrate that both H2S donors inhibited allodynia and hyperalgesia in a dose-dependent manner, potentiated the analgesic effects and expression of DOR, activated the antioxidant system, and reduced the nociceptive and apoptotic pathways. The data further demonstrate the possible participation of potassium channels and the Nrf2 transcription factor signaling pathway in the pain-relieving activities of DADS and P-ITC. This study suggests that the systemic administration of DADS and P-ITC and local application of DOR agonists in combination with slow-releasing H2S donors are two new strategies for the treatment of inflammatory pain.

2.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638592

RESUMO

The development of neuropathy and of mood alterations is frequent after chemotherapy. These complications, independent from the antitumoral mechanism, are interconnected due to an overlapping in their processing pathways and a common neuroinflammatory condition. This study aims to verify whether in mice the treatment with the proteasome inhibitor bortezomib (BTZ), at a protocol capable of inducing painful neuropathy, is associated with anxiety, depression and supraspinal neuroinflammation. We also verify if the therapeutic treatment with the antagonist of the prokineticin (PK) system PC1, which is known to contrast pain and neuroinflammation, can prevent mood alterations. Mice were treated with BTZ (0.4 mg/kg three times/week for 4 weeks); mechanical allodynia and locomotor activity were evaluated over time while anxiety (dark light and marble burying test), depression (sucrose preference and swimming test) and supraspinal neuroinflammation were checked at the end of the protocol. BTZ treated neuropathic mice develop anxiety and depression. The presence of mood alterations is related to the presence of neuroinflammation and PK system activation in prefrontal cortex, hippocampus and hypothalamus with high levels of PK2 and PKR2 receptor, IL-6 and TNF-α, TLR4 and an upregulation of glial markers. PC1 treatment, counteracting pain, prevented the development of supraspinal inflammation and depression-like behavior in BTZ mice.


Assuntos
Afeto/efeitos dos fármacos , Bortezomib/farmacologia , Inibidores de Proteassoma/farmacologia , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/tratamento farmacológico , Dor/metabolismo , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
Mol Neurobiol ; 53(10): 7213-7227, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26687186

RESUMO

Perinatal hypoxic-ischemic (HI) brain injury results in death or profound long-term neurologic disability in both children and adults. However, there is no effective pharmacological therapy due to a poor understanding of HI events, especially the initial triggers for hypoxic-ischemic injury such as disrupted ionic homeostasis and the lack of effective intervention strategy. In the present study, we showed that neonatal brains undergo a developmental increase in the disruption of K+ homeostasis during simulated ischemia, oxygen-glucose deprivation (OGD) and neonatal HI cortex has a triple phasic response (earlier attenuation, later enhancement, and then recovery) of disrupted K+ homeostasis to OGD. This response partially involves the activity of the δ-opioid receptor (DOR) since the earlier attenuation of ischemic disruption of K+ homeostasis could be blocked by DOR antagonism, while the later enhancement was reversed by DOR activation. Similar to DOR activation, acupuncture, a strategy to promote DOR activity, could partially reverse the later enhanced ischemic disruption of K+ homeostasis in the neonatal cortex. Since maintaining cellular K+ homeostasis and inhibiting excessive K+ fluxes in the early phase of hypoxic-ischemic insults may be of therapeutic benefit in the treatment of ischemic brain injury and related neurodegenerative conditions, and since many neurons and other cells can be rescued during the "window of opportunity" after HI insults, our first findings regarding the role of acupuncture and DOR in attenuating ischemic disruption of K+ homeostasis in the neonatal HI brain suggest a potential intervention therapy in the treatment of neonatal brain injury, especially hypoxic-ischemic encephalopathy.


Assuntos
Terapia por Acupuntura , Córtex Cerebral/patologia , Homeostase , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/terapia , Receptores Opioides delta/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Glucose/deficiência , Oxigênio , Potássio/metabolismo , Ratos Sprague-Dawley
4.
Exp Neurol ; 236(2): 228-39, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22609332

RESUMO

Activation of delta-opioid receptors (DOR) is neuroprotective against hypoxic/ischemic injury in the cortex, which is at least partially related to its action against hypoxic/ischemic disruption of ionic homeostasis that triggers neuronal injury. Na(+) influx through TTX-sensitive voltage-gated Na(+) channels may be a main mechanism for hypoxia-induced disruption of K(+) homeostasis, with DOR activation attenuating the disruption of ionic homeostasis by targeting voltage-gated Na(+) channels. In the present study we examined the role of DOR in the regulation of Na(+) influx in anoxia and simulated ischemia (oxygen-glucose deprivation) as well as the effect of DOR activation on the Na(+) influx induced by a Na(+) channel opener without anoxic/ischemic stress and explored a potential PKC mechanism underlying the DOR action. We directly measured extracellular Na(+) activity in mouse cortical slices with Na(+) selective electrodes and found that (1) anoxia-induced Na(+) influx occurred mainly through TTX-sensitive Na(+) channels; (2) DOR activation inhibited the anoxia/ischemia-induced Na(+) influx; (3) veratridine, a Na(+) channel opener, enhanced the anoxia-induced Na(+) influx; this could be attenuated by DOR activation; (4) DOR activation did not reduce the anoxia-induced Na(+) influx in the presence of chelerythrine, a broad-spectrum PKC blocker; and (5) DOR effects were blocked by PKCßII peptide inhibitor, and PKCθ pseudosubstrate inhibitor, respectively. We conclude that DOR activation inhibits anoxia-induced Na(+) influx through Na(+) channels via PKC (especially PKCßII and PKCθ isoforms) dependent mechanisms in the cortex.


Assuntos
Lobo Frontal/metabolismo , Isoenzimas/fisiologia , Lobo Parietal/metabolismo , Proteína Quinase C/fisiologia , Receptores Opioides delta/metabolismo , Canais de Sódio/metabolismo , Animais , Hipóxia Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Córtex Cerebral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Proteína Quinase C beta , Proteína Quinase C-theta , Receptores Opioides delta/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA