Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36437833

RESUMO

Gedan Jiangya Decoction (GJD), a Chinese herbal medicine composed of six botanical medicines, was designed to treat hypertension (patent published number (CN114246896A)). The overexpression of the ERK (extracellular signal-regulated kinase) signaling pathway is essential in developing left ventricular hypertrophy (LVH). This study aimed to evaluate GJD's effects on LVH in spontaneously hypertensive rats (SHRs) and examine its potential mechanisms on Ras/ERK1/2 pathway regulation. Thirty-five ten-week-old SHRs were randomly assigned to one of five groups: GJD low dosage, medium dose, high dose, model, and captopril. Wistar-Kyoto (WKY) rats served as the control group. All rats received a 6-week treatment. The following parameters were measured: systolic (SBP) and diastolic blood pressure (DBP), left ventricular mass index (LVMI), and serum TGF-beta1. The pathologic structure was determined by H & E staining and Masson. TGF-beta1, Ras, ERK1/2, and C-Fos levels were determined using western blotting and real-time qPCR. SBP, DBP, and LVMI were reduced significantly in the GJD group compared with the model group. GJD inhibited TGF-beta1, Ras, ERK1/2, and C-Fos expression in LVH. In conclusion, GJD reduced the Ras/ERK1/2 pathway expression, which decreased hypertension-induced heart hypertrophy. GJD may protect hypertension-induced myocardial hypertrophy by altering gene expression patterns in the heart.

2.
Mediators Inflamm ; 2022: 7345116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164390

RESUMO

Gedan Jiangya decoction (GJD) (aqueous ethanol extract), a traditional Chinese medicine formula which contain six botanical drugs (Uncaria rhynchophylla (Miq.) Miq., Salvia miltiorrhiza Bunge, Pueraria lobata (Willd.) Ohwi, Eucommia ulmoides Oliv., Prunella vulgaris L., and Achyranthes bidentata Blume) was designed to treat hypertension; however, the underlying mechanism of action is unclear. This study aimed to determine the mechanisms of action of GJD in the treatment of hypertension in spontaneously hypertensive rats (SHR). Male SHRs were randomly divided into five groups: GJD doses were low (1.36 g/kg/d), medium (2.72 g/kg/d), and high (5.44 g/kg/d), captopril (13.5 mg/kg/d), and SHR groups, with Wistar-Kyoto rats (WKY) serving as the control. Every rat was gavaged once a day. The ALC-NIBP, a noninvasive blood pressure device, measured systolic (SBP) and diastolic (DBP) blood pressures. Six weeks following treatment, all rats were anesthetized. The blood samples were obtained from the abdominal aorta and then serum isolated to assess endothelin-1 and angiotensin II, interleukin-1beta, interleukin-6, and TNF-alpha. The left ventricular and thoracic aortas were taken for HE staining, immunohistochemistry, RT-qPCR, and western blot examination. Following GJD therapy, SBP and DBP were significantly lowered, as were serum levels of endothelin-1 and angiotensin II. The thickness of the left ventricular and thoracic aorta walls reduced, as did type I collagen, type III collagen, and alpha-SMA expression in the left ventricular and aortic tissues. The GJD treatment significantly reduced serum levels of the inflammatory markers interleukin-1beta, interleukin-6, and TNF-alpha. Furthermore, interleukin-1 beta, interleukin-6, TNF-alpha, TAK1, and NF-κB/p65 levels were significantly reduced in left ventricular and aortic tissues, whereas IkB-alpha levels were significantly elevated. GJD has a dose-dependent effect on all parameters. In conclusion, GJD has been shown to lower blood pressure, improve cardiovascular remodeling, and reduce inflammation via regulating NF-κB in SHRs.


Assuntos
Angiotensina II , Hipertensão , Angiotensina II/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea , Captopril/farmacologia , Captopril/uso terapêutico , Colágeno Tipo III , Endotelina-1/farmacologia , Etanol , Inflamação/tratamento farmacológico , Interleucina-1beta/farmacologia , Interleucina-6/farmacologia , Masculino , NF-kappa B , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fator de Necrose Tumoral alfa/farmacologia , Uncaria
3.
Phytomedicine ; 91: 153711, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34450377

RESUMO

BACKGROUND: Gemcitabine (GCB) is a first-line chemotherapeutic drug for pancreatic cancer (PCa). However, the resistance begins developing within weeks of chemotherapy. SPINK1 overexpression enhances resistance to chemotherapy. In a recent study, our laboratory established that the oleanolic acid (OA) derivative, K73-03, had a strong inhibitory effect on a SPINK1 overexpressed PCa cells. PURPOSE: In our current study, we studied the enhancement of GCB inhibitory effect by K73-03, a new novel OA derivative, alone or in combination with GCB on the GCB-resistant PCa cells by mitochondrial damage through regulation of the miR-421/SPINK1. METHODS: We detected the binding between miR-421 and SPINK1-3'-UTR in GCB-resistant PCa cells using Luciferase reporter assays. Cells viability, apoptosis, migration, and mitochondrial damage were investigated. RESULTS: The results demonstrated that the combination of K73-03 and GCB suppressed the growth of AsPC-1 and MIA PaCa-2 cells synergistically, with or without GCB resistance. Mechanistic findings showed that a combination of K73-03 and GCB silences SPINK1 epigenetically by miR-421 up-regulating, which leads to mitochondrial damage and inducing apoptosis in GCB-resistant PCa cells. CONCLUSION: We found an interesting finding that the 73-03 in combination with GCB can improve GCB efficacy and decrease PCa resistance, which induced apoptosis and mitochondrial damage through epigenetic inhibition of SPINK1 transcription by miR-421 up-regulation. This was the first study that used OA derivatives on GCB-resistant PCa cells, so this combined strategy warrants further investigation.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , MicroRNAs , Ácido Oleanólico/farmacologia , Neoplasias Pancreáticas , Inibidor da Tripsina Pancreática de Kazal , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , MicroRNAs/genética , Ácido Oleanólico/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Inibidor da Tripsina Pancreática de Kazal/genética , Gencitabina
4.
Biomed Res Int ; 2020: 7136075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32775437

RESUMO

Even with substantial advances in cardiovascular therapy, the morbidity and mortality rates of diabetic cardiomyopathy (DCM) continually increase. Hence, a feasible therapeutic approach is urgently needed. Objectives. This work is aimed at systemically reviewing literature and addressing cell targets in DCM through the possible cardioprotection of G. lucidum through its antioxidant effects by using the Open Targets Platform (OTP) website. Methods. The OTP website version of 19.11 was accessed in December 2019 to identify the studies in DCM involving G. lucidum. Results. Among the 157 cell targets associated with DCM, the mammalian target of rapamycin (mTOR) was shared by all evidence, drug, and text mining data with 0.08 score association. mTOR also had the highest score association 0.1 with autophagy in DCM. Among the 1731 studies of indexed PubMed articles on G. lucidum published between 1985 and 2019, 33 addressed the antioxidant effects of G. lucidum and its molecular signal pathways involving oxidative stress and therefore were included in the current work. Conclusion. mTOR is one of the targets by DCM and can be inhibited by the antioxidative properties of G. lucidum directly via scavenging radicals and indirectly via modulating mTOR signal pathways such as Wnt signaling pathway, Erk1/2 signaling, and NF-κB pathways.


Assuntos
Antioxidantes , Cardiotônicos , Cardiomiopatias Diabéticas , Extratos Vegetais , Reishi/química , Antioxidantes/química , Antioxidantes/uso terapêutico , Cardiotônicos/química , Cardiotônicos/uso terapêutico , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA