Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1172403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214337

RESUMO

Introduction: Foodborne trichothecene T-2 Toxin, is a highly toxic metabolite produced by Fusarium species contaminating animal and human food, causing multiple organ failure and health hazards. T-2 toxins induce hepatotoxicity via oxidative stress causing hepatocytes cytotoxicity and genotoxicity. In this study, curcumin and taurine were investigated and compared as antioxidants against T-2-provoked hepatotoxicity. Methods: Wistar rats were administrated T-2 toxin sublethal oral dose (0.1 mg/kg) for 2 months, followed by curcumin (80 mg/kg) and taurine (50 mg/kg) for 3 weeks. Biochemical assessment of liver enzymes, lipid profiles, thiobarbituric acid reactive substances (TBARs), AFU, TNF-α, total glutathione, molecular docking, histological and immunohistochemical markers for anti-transforming growth factor-ß1 (TGFß1), double-strand DNA damage (H2AX), regeneration (KI67) and apoptosis (Active caspase3) were done. Results and Discussion: Compared to T-2 toxin, curcumin and taurine treatment significantly ameliorated hepatoxicity as; hemoglobin, hematocrit and glutathione, hepatic glycogen, and KI-67 immune-reactive hepatocytes were significantly increased. Although, liver enzymes, inflammation, fibrosis, TGFß1 immunoexpressing and H2AX and active caspase 3 positive hepatocytes were significantly decreased. Noteworthy, curcumin's therapeutic effect was superior to taurine by histomorphometry parameters. Furthermore, molecular docking of the structural influence of curcumin and taurine on the DNA sequence showed curcumin's higher binding affinity than taurine. Conclusion: Both curcumin and taurine ameliorated T-2 induced hepatotoxicity as strong antioxidative agents with more effectiveness for curcumin.

2.
BMC Complement Med Ther ; 21(1): 19, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413326

RESUMO

BACKGROUND: During the last few decades, patients worldwide have been interested in using alternative medicine in treating diseases to avoid the increased side effects of chemical medications. Green coffee is unroasted coffee seeds that have higher amounts of chlorogenic acid compared to roasted coffee. Green coffee was successfully used to protect against obesity, Alzheimer disease, high blood pressure and bacterial infection. METHODS: This study aimed to investigate the probable protective activity of the green coffee methanolic extract, silymarin and their combination on CCl4-induced liver toxicity in male rats. Thirty Sprague - Dawley male albino rats were divided into 5 groups; control negative (G1) just got the vehicle (olive oil) and the other four groups received CCl4 dissolved in olive oil through an intraperitoneal injection and were divided into untreated control positive group (G2), the third group (G3) was treated with green coffee methanolic extract, the fourth group (G4) was treated with silymarin, and the fifth group (G5) was treated with a combination of green coffee methanolic extract and silymarin. RESULTS: In the positive control group treated with CCl4 (G2), the CCl4-induced toxicity increased lipid peroxidation, IL-6, kidney function parameters, liver function enzymes, total cholesterol, triglycerides and low-density lipoproteins, and decreased irisin, antioxidants, CYP450 and high-density lipoprotein levels. Hepatic tissues were also injured. However, treating the injured rats in G3, G4 and G5 significantly improved the altered parameters and hepatic tissues. CONCLUSIONS: Green coffee methanolic extract, silymarin, and their combination succeeded in protecting the male rats against CCl4 hepatotoxicity due to their antioxidant activity. Effect of green coffee methanolic extract mixed with silymarin in G5 was more efficient than that of green coffee methanolic extract in G3 or silymarin in G4.


Assuntos
Café/química , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Silimarina/farmacologia , Animais , Tetracloreto de Carbono , Sinergismo Farmacológico , Fígado/patologia , Masculino , Metanol , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA