RESUMO
BACKGROUND: Astaxanthin is a ketocarotenoid with high antioxidant power used in different fields as healthcare, food/feed supplementation and as pigmenting agent in aquaculture. Primary producers of astaxanthin are some species of microalgae, unicellular photosynthetic organisms, as Haematococcus lacustris. Astaxanthin production by cultivation of Haematococcus lacustris is costly due to low biomass productivity, high risk of contamination and the requirement of downstream extraction processes, causing an extremely high price on the market. Some microalgae species are also primary producers of omega-3 fatty acids, essential nutrients for humans, being related to cardiovascular wellness, and required for visual and cognitive development. One of the main well-known producers of omega-3 fatty eicosapentaenoic acid (EPA) is the marine microalga Nannochloropsis gaditana (named also Microchloropsis gaditana): this species has been already approved by the Food and Drug Administration (FDA) for human consumption and it is characterized by a fast grow phenotype. RESULTS: Here we obtained by chemical mutagenesis a Nannochloropsis gaditana mutant strain, called S4, characterized by increased carotenoid to chlorophyll ratio. S4 strain showed improved photosynthetic activity, increased lipid productivity and increased ketocarotenoids accumulation, producing not only canthaxanthin but also astaxanthin, usually found only in traces in the WT strain. Ketocarotenoids produced in S4 strain were extractible in different organic solvents, with the highest efficiency observed upon microwaves pre-treatment followed by methanol extraction. By cultivation of S4 strain at different irradiances it was possible to produce up to 1.3 and 5.2 mgL-1 day-1 of ketocarotenoids and EPA respectively, in a single cultivation phase, even in absence of stressing conditions. Genome sequencing of S4 strain allowed to identify 199 single nucleotide polymorphisms (SNP): among the mutated genes, mutations in a carotenoid oxygenase gene and in a glutamate synthase gene could explain the different carotenoids content and the lower chlorophylls content, respectively. CONCLUSIONS: By chemical mutagenesis and selection of strain with increased carotenoids to chlorophyll ratio it was possible to isolate a new Nannochloropsis gaditana strain, called S4 strain, characterized by increased lipids and ketocarotenoids accumulation. S4 strain can thus be considered as novel platform for ketocarotenoids and EPA production for different industrial applications.
Assuntos
Microalgas , Estramenópilas , Carotenoides/química , Clorofila , Ácido Eicosapentaenoico , Microalgas/química , Microalgas/genética , Estramenópilas/genética , XantofilasRESUMO
Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO2, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB) was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates.