Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
EBioMedicine ; 55: 102747, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32361247

RESUMO

BACKGROUND: Studying within-host genetic diversity of Mycobacterium tuberculosis (Mtb) in patients during treatment may identify adaptations to antibiotic and immune pressure. Understanding the significance of genetic heteroresistance, and more specifically heterozygous resistance-associated variants (RAVs), is clinically important given increasing use of rapid molecular tests and whole genome sequencing (WGS). METHODS: We analyse data from six studies in KwaZulu-Natal, South Africa. Most patients (>75%) had baseline rifampicin resistance. Sputum was collected for culture at baseline and at between two and nine intervals until month six. Positive cultures underwent WGS. Mixed infections and reinfections were excluded from analysis. FINDINGS: Baseline Mtb overall genetic diversity (at treatment initiation or major change to regimen) was associated with cavitary disease, not taking antiretroviral therapy if HIV infected, infection with lineage 2 strains and absence of second-line drug resistance on univariate analyses. Baseline genetic diversity was not associated with six-month outcome. Genetic diversity increased from baseline to weeks one and two before returning to previous levels. Baseline genetic heteroresistance was most common for bedaquiline (6/10 [60%] of isolates with RAVs) and fluoroquinolones (9/62 [13%]). Most patients with heterozygous RAVs on WGS with sequential isolates available demonstrated RAV persistence or fixation (17/20, 85%). New RAVs emerged in 9/286 (3%) patients during treatment. We could detect low-frequency RAVs preceding emergent resistance in only one case, although validation of deep sequencing to detect rare variants is required. INTERPRETATION: In this study of single-strain Mtb infections, baseline within-host bacterial genetic diversity did not predict outcome but may reveal adaptations to host and drug pressures. Predicting emergent resistance from low-frequency RAVs requires further work to separate transient from consequential mutations. FUNDING: Wellcome Trust, NIH/NIAID.


Assuntos
Antituberculosos/uso terapêutico , Diarilquinolinas/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Adulto , Estudos de Coortes , Feminino , Fluoroquinolonas/uso terapêutico , Regulação Bacteriana da Expressão Gênica , Variação Genética , Interações Hospedeiro-Patógeno/genética , Humanos , Masculino , Redes e Vias Metabólicas/genética , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Rifampina/uso terapêutico , África do Sul , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/patologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
2.
Nature ; 538(7624): 201-206, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27654912

RESUMO

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Genômica , Taxa de Mutação , Filogenia , Grupos Raciais/genética , Animais , Austrália , População Negra/genética , Conjuntos de Dados como Assunto , Genética Populacional , História Antiga , Migração Humana/história , Humanos , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Homem de Neandertal/genética , Nova Guiné , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
3.
Science ; 349(6250): aab3884, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26198033

RESUMO

How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative "Paleoamerican" relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.


Assuntos
Migração Humana/história , Indígenas Norte-Americanos/história , América , Fluxo Gênico , Genômica , História Antiga , Humanos , Indígenas Norte-Americanos/genética , Modelos Genéticos , Sibéria
4.
Nature ; 506(7487): 225-9, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24522598

RESUMO

Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 (14)C years bp (approximately 12,707-12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.


Assuntos
Genoma Humano/genética , Indígenas Norte-Americanos/genética , Filogenia , Arqueologia , Ásia/etnologia , Osso e Ossos , Sepultamento , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Emigração e Imigração/história , Europa (Continente)/etnologia , Fluxo Gênico/genética , Haplótipos/genética , História Antiga , Humanos , Lactente , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Montana , Dinâmica Populacional , Datação Radiométrica
5.
Nature ; 445(7130): 915-918, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17287725

RESUMO

Infection of the stomach by Helicobacter pylori is ubiquitous among humans. However, although H. pylori strains from different geographic areas are associated with clear phylogeographic differentiation, the age of an association between these bacteria with humans remains highly controversial. Here we show, using sequences from a large data set of bacterial strains that, as in humans, genetic diversity in H. pylori decreases with geographic distance from east Africa, the cradle of modern humans. We also observe similar clines of genetic isolation by distance (IBD) for both H. pylori and its human host at a worldwide scale. Like humans, simulations indicate that H. pylori seems to have spread from east Africa around 58,000 yr ago. Even at more restricted geographic scales, where IBD tends to become blurred, principal component clines in H. pylori from Europe strongly resemble the classical clines for Europeans described by Cavalli-Sforza and colleagues. Taken together, our results establish that anatomically modern humans were already infected by H. pylori before their migrations from Africa and demonstrate that H. pylori has remained intimately associated with their human host populations ever since.


Assuntos
Emigração e Imigração , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Filogenia , África/epidemiologia , Ásia , Europa (Continente) , Variação Genética , Geografia , Infecções por Helicobacter/epidemiologia , História Antiga , Humanos , Epidemiologia Molecular , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA