Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sleep ; 37(6): 1061-75, 1075A-1075B, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24882901

RESUMO

STUDY OBJECTIVES: Memory reactivation appears to be a fundamental process in memory consolidation. In this study we tested the influence of memory reactivation during rapid eye movement (REM) sleep on memory performance and brain responses at retrieval in healthy human participants. PARTICIPANTS: Fifty-six healthy subjects (28 women and 28 men, age [mean ± standard deviation]: 21.6 ± 2.2 y) participated in this functional magnetic resonance imaging (fMRI) study. METHODS AND RESULTS: Auditory cues were associated with pictures of faces during their encoding. These memory cues delivered during REM sleep enhanced subsequent accurate recollections but also false recognitions. These results suggest that reactivated memories interacted with semantically related representations, and induced new creative associations, which subsequently reduced the distinction between new and previously encoded exemplars. Cues had no effect if presented during stage 2 sleep, or if they were not associated with faces during encoding. Functional magnetic resonance imaging revealed that following exposure to conditioned cues during REM sleep, responses to faces during retrieval were enhanced both in a visual area and in a cortical region of multisensory (auditory-visual) convergence. CONCLUSIONS: These results show that reactivating memories during REM sleep enhances cortical responses during retrieval, suggesting the integration of recent memories within cortical circuits, favoring the generalization and schematization of the information.


Assuntos
Córtex Cerebral/fisiologia , Memória/fisiologia , Sono REM/fisiologia , Estimulação Acústica , Adulto , Mapeamento Encefálico , Condicionamento Psicológico , Sinais (Psicologia) , Eletroencefalografia , Emoções , Expressão Facial , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Som , Adulto Jovem
2.
J Sleep Res ; 21(6): 648-58, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22594455

RESUMO

The Attention Network Test (ANT) is deemed to assess the alerting, orientating and executive components of human attention. Capitalizing on the opportunity to investigate three facets of attention in a single task, we used functional magnetic resonance imaging (fMRI) to assess the effect of sleep deprivation (SD) on brain responses associated with the three attentional components elicited by the ANT. Twelve healthy volunteers were scanned in two conditions 1 week apart, after a normal night of sleep (rested wakefulness, RW) or after one night of total sleep deprivation. Sleep deprivation was associated with a global increase in reaction times, which did not affect specifically any of the three attention effects. Brain responses associated with the alerting effect did not differ between RW and SD. Higher-order attention components (orientating and conflict effects) were associated with significantly larger thalamic responses during SD than during RW. These results suggest that SD influences different components of human attention non-selectively, through mechanisms that might either affect centrencephalic structures maintaining vigilance or ubiquitously perturb neuronal function. Compensatory responses can counter these effects transiently by recruiting thalamic responses, thereby supporting thalamocortical function.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Função Executiva/fisiologia , Imageamento por Ressonância Magnética/métodos , Orientação/fisiologia , Privação do Sono/fisiopatologia , Sono/fisiologia , Adulto , Encéfalo/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Testes Neuropsicológicos , Distúrbios do Início e da Manutenção do Sono , Tálamo/fisiologia , Tálamo/fisiopatologia , Adulto Jovem
3.
Science ; 324(5926): 516-9, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19390047

RESUMO

Throughout the day, cognitive performance is under the combined influence of circadian processes and homeostatic sleep pressure. Some people perform best in the morning, whereas others are more alert in the evening. These chronotypes provide a unique way to study the effects of sleep-wake regulation on the cerebral mechanisms supporting cognition. Using functional magnetic resonance imaging in extreme chronotypes, we found that maintaining attention in the evening was associated with higher activity in evening than morning chronotypes in a region of the locus coeruleus and in a suprachiasmatic area (SCA) including the circadian master clock. Activity in the SCA decreased with increasing homeostatic sleep pressure. This result shows the direct influence of the homeostatic and circadian interaction on the neural activity underpinning human behavior.


Assuntos
Atenção/fisiologia , Cognição/fisiologia , Homeostase/fisiologia , Sono/fisiologia , Núcleo Supraquiasmático/fisiologia , Mapeamento Encefálico , Ritmo Circadiano , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Melatonina/metabolismo , Polissonografia , Desempenho Psicomotor , Tálamo/fisiologia , Vigília , Adulto Jovem
4.
Neurobiol Aging ; 30(10): 1637-51, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18258337

RESUMO

Personality changes are frequently described by caregivers of patients with Alzheimer's disease, while they are less often reported by the patients. This relative anosognosia of Alzheimer disease (AD) patients for personality changes might be related to impaired self-judgment and to decreased ability to understand their caregiver's perspective. To investigate this issue, we explored the cerebral correlates of self-assessment and perspective taking in patients with mild AD, elderly and young volunteers. All subjects assessed relevance of personality traits adjectives for self and a relative, taking either their own or their relative's perspective, during a functional imaging experiment. The comparison of subject's and relative's answers provided congruency scores used to assess self-judgment and perspective taking performance. The self-judgment "accuracy" score was diminished in AD, and when patients assessed adjectives for self-relevance, they predominantly activated bilateral intraparietal sulci (IPS). Previous studies associated IPS activation with familiarity judgment, which AD patients would use more than recollection when retrieving information to assess self-personality. When taking a third-person perspective, patients activated prefrontal regions (similarly to young volunteers), while elderly controls recruited visual associative areas (also activated by young volunteers). This suggests that mild AD patients relied more on reasoning processes than on visual imagery of autobiographical memories to take their relative's perspective. This strategy may help AD patients to cope with episodic memory impairment even if it does not prevent them from making some mind-reading errors.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Encéfalo/fisiopatologia , Julgamento/fisiologia , Personalidade/fisiologia , Autoavaliação (Psicologia) , Idoso , Envelhecimento , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes de Personalidade , Adulto Jovem
5.
Curr Biol ; 16(16): 1616-21, 2006 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-16920622

RESUMO

In humans, light enhances both alertness and performance during nighttime and daytime [1-4] and influences regional brain function [5]. These effects do not correspond to classical visual responses but involve a non-image forming (NIF) system, which elicits greater endocrine, physiological, neurophysiological, and behavioral responses to shorter light wavelengths than to wavelengths geared toward the visual system [6-11]. During daytime, the neural changes induced by light exposure, and their time courses, are largely unknown. With functional magnetic resonance imaging (fMRI), we characterized the neural correlates of the alerting effect of daytime light by assessing the responses to an auditory oddball task [12-15], before and after a short exposure to a bright white light. Light-induced improvement in subjective alertness was linearly related to responses in the posterior thalamus. In addition, light enhanced responses in a set of cortical areas supporting attentional oddball effects, and it prevented decreases of activity otherwise observed during continuous darkness. Responses to light were remarkably dynamic. They declined within minutes after the end of the light stimulus, following various region-specific time courses. These findings suggest that light can modulate activity of subcortical structures involved in alertness, thereby dynamically promoting cortical activity in networks involved in ongoing nonvisual cognitive processes.


Assuntos
Atenção/efeitos da radiação , Encéfalo/fisiologia , Cognição/efeitos da radiação , Luz Solar , Estimulação Acústica , Adulto , Análise de Variância , Atenção/fisiologia , Cognição/fisiologia , Humanos , Imageamento por Ressonância Magnética , Estimulação Luminosa , Fatores de Tempo
6.
Curr Biol ; 14(20): 1842-6, 2004 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-15498492

RESUMO

The brain processes light information to visually represent the environment but also to detect changes in ambient light level. The latter information induces non-image-forming responses and exerts powerful effects on physiology such as synchronization of the circadian clock and suppression of melatonin. In rodents, irradiance information is transduced from a discrete subset of photosensitive retinal ganglion cells via the retinohypothalamic tract to various hypothalamic and brainstem regulatory structures including the hypothalamic suprachiasmatic nuclei, the master circadian pacemaker. In humans, light also acutely modulates alertness, but the cerebral correlates of this effect are unknown. We assessed regional cerebral blood flow in 13 subjects attending to auditory and visual stimuli in near darkness following light exposures (>8000 lux) of different durations (0.5, 17, 16.5, and 0 min) during the biological night. The bright broadband polychromatic light suppressed melatonin and enhanced alertness. Functional imaging revealed that a large-scale occipito-parietal attention network, including the right intraparietal sulcus, was more active in proportion to the duration of light exposures preceding the scans. Activity in the hypothalamus decreased in proportion to previous illumination. These findings have important implications for understanding the effects of light on human behavior.


Assuntos
Atenção/fisiologia , Encéfalo/irrigação sanguínea , Luz , Melatonina/sangue , Estimulação Acústica , Adulto , Análise de Variância , Atenção/efeitos da radiação , Encéfalo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Estimulação Luminosa , Tomografia por Emissão de Pósitrons , Fluxo Sanguíneo Regional/fisiologia , Fluxo Sanguíneo Regional/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA