Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nanoscale ; 14(35): 12773-12788, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36001382

RESUMO

Spatiotemporal targeting of anti-glioma drugs remains a pressing issue in glioblastoma (GBM) treatment. We challenge this issue by developing a minimally invasive in situ implantable hydrogel implant comprising transferrin-targeted temozolomide-miltefosine nanovesicles in the surgically resected GBM cavity (tumour bed). Injection of the "nanovesicle in hydrogel system" in orthotopic GBM-bearing mice improved drug penetration into the peri-cavitary region (∼4.5 mm in depth) with the potential to act as a bridge therapy in the immediate postoperative period, before the initiation of adjuvant radiotherapy. The controlled and sustained release of temozolomide over a month in the surgical cavity eradicated the microscopic GBM cells present within the tumour bed, thereby augmenting the efficacy of adjuvant therapy. The drug (temozolomide and miltefosine) combination was tolerable and efficiently inhibited tumour growth, causing significant prolongation of the survival of tumour-bearing mice compared to that with the free drug. Direct implantation at the target site in the brain resulted in spatiotemporal anti-glioma activity with minimal extracranial and systemic distribution. Nanovesicle in flexible hydrogel systems can be used as potential platforms for the post-surgical management of GBM before initiating adjuvant radiation therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Nanopartículas , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/uso terapêutico , Glioblastoma/patologia , Glioma/tratamento farmacológico , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Camundongos , Fosforilcolina/análogos & derivados , Polímeros/uso terapêutico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Transferrina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biomed Mater ; 17(4)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35168221

RESUMO

Adequate micronutrient availability is particularly important in women, children and infants. Micronutrient deficiencies are the major cause of maternal and neonatal morbidity. To overcome this, WHO recommends the use of folic acid and iron supplements for reducing anaemia and improving the health of the mother and infants. Oral intake of supplements for nutritional deficiencies are associated with gastric irritation, nausea, constipation and non-patient compliance due to associated taste. In case of absorption deficiency nutrients administered orally pass-through digestive tract unabsorbed. In the present study, we propose transdermal delivery of nutraceuticals to avoid the limitations associated with oral intake. Transdermal delivery has limited use because of the closely packed barrier of the stratum corneum that limits the permeability of molecules across skin. Here, we have used biomimetic nanovesicles impregnated in transdermal patches for delivery of folic acid and iron. Nanovesicles are prepared using an abundant component of cell membrane, phosphatidyl choline and a permeation enhancer. Further these nanovesicles are impregnated onto polyacrylate based transdermal patch.In vitrostudies have shown the ability of nanovesicles to fluidise skin lipids and penetrate into deeper skin.In vivoapplication of transdermal patches gradually increased the systemic concentration of nutraceuticals. Post application of the patch, five-fold increase in plasma folic acid concentration and 1.5-fold increase in plasma iron concertation was achieved in 6 h. Developed nanovesicles were compatible with keratinocytes and fibroblasts as testedin vitroand have the potential to enhance the cellular uptake of molecules. Skin irritation studies on human volunteers have confirmed the safety of nutraceutical loaded nanovesicles. Thus, the developed nutraceutical loaded transdermal patches provide a potential, easy to use platform for micronutrient delivery in infants and mothers.


Assuntos
Deficiências de Ferro , Adesivo Transdérmico , Criança , Suplementos Nutricionais , Sistemas de Liberação de Medicamentos , Feminino , Ácido Fólico/metabolismo , Humanos , Recém-Nascido , Ferro , Mentol/metabolismo , Micronutrientes/metabolismo , Fosfolipídeos/metabolismo , Pele/metabolismo , Absorção Cutânea
3.
BMC Nutr ; 7(1): 48, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34493339

RESUMO

BACKGROUND: Micronutrient deficiency is a known cause of adverse neurodevelopment and growth. Poor adherence to oral regimes of micronutrient supplements is a known challenge during the implementation of supplementation programs. The present study evaluates the benefits of liposomal encapsulated micronutrient fortified body oils (LMF oil) that can be used for infant body massage in terms of neurodevelopment and prevention of deficiency. STUDY DESIGN: Double-blind randomized clinical trial. METHODS: A total of 444 healthy infants aged 4-7 weeks were randomized to receive either LMF oil (containing iron, vitamin D, folate, and vitamin B12) or placebo oil for gentle body massage till 12 months of age. Blood samples were collected at 6 and 12 months for transferrin saturation (TSAT), hemoglobin, and 25-hydroxy vitamin (25-OH-D) levels. Mental and motor development was assessed at 12 months using developmental assessment for Indian Infants (DASII). RESULTS: A total of 391 infants completed the study. There was no significant improvement in the hemoglobin in the intervention group at 12 months of age as compared to the placebo group [- 0.50 vs.-0.54 g%]. There was a marginally significant improvement in 25-OH-D at 12 months in the LMF oil group [+ 1.46vs.-0.18 ng/ml, p = 0.049]. In the subgroup of infants with moderate anemia, the intervention prevented the decline in hemoglobin at 12 months of age [adjusted mean change + 0.11vs.-0.51 g%, p = 0.043]. The mental or motor developmental quotients in the intervention group were not significantly different from those in the placebo group. CONCLUSION: Use of LMF oil for prevention of nutritional deficiency did not offer significant protection against nutritional anemia but prevented vitamin D deficiency to some extent with improvement in 25-OH-D at 12 months. In the subgroup of infants with moderate anemia, the intervention prevented the decline in hemoglobin at 12 months of age. The intervention did not result in significant improvement in mental or motor development. Further evaluation with increased doses needs to be undertaken. TRIAL REGISTRATION: CTRI no: CTRI/2017/11/010710 ; dated 30/11/2017.

4.
Biomaterials ; 274: 120875, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34010755

RESUMO

Inflammatory disease (ID) is an umbrella term encompassing all illnesses involving chronic inflammation as the central manifestation of pathogenesis. These include, inflammatory bowel diseases, hepatitis, pulmonary disorders, atherosclerosis, myocardial infarction, pancreatitis, arthritis, periodontitis, psoriasis. The IDs create a severe burden on healthcare and significantly impact the global socio-economic balance. Unfortunately, the standard therapies that rely on a combination of anti-inflammatory and immunosuppressive agents are palliative and provide only short-term relief. In contrast, the emerging concept of immunomodulatory nanosystems (IMNs) has the potential to address the underlying causes and prevent reoccurrence, thereby, creating new opportunities for treating IDs. The IMNs offer exquisite ability to precisely modulate the immune system for a therapeutic advantage. The nano-sized dimension of IMNs allows them to efficiently infiltrate lymphatic drainage, interact with immune cells, and subsequently to undergo rapid endocytosis by hyperactive immune cells (HICs) at inflamed sites. Thus, IMNs serve to restore dysfunctional or HICs and alleviate the inflammation. We identified that different IMNs exert their immunomodulatory action via either of the seven mechanisms to modulate; cytokine production, cytokine neutralization, cellular infiltration, macrophage polarization, HICs growth inhibition, stimulating T-reg mediated tolerance and modulating oxidative-stress. In this article, we discussed representative examples of IMNs by highlighting their rationalization, design principle, and mechanism of action in context of treating various IDs. Lastly, we highlighted technical challenges in the application of IMNs and explored the future direction of research, which could potentially help to overcome those challenges.


Assuntos
Citocinas , Imunomodulação , Anti-Inflamatórios , Humanos , Inflamação/tratamento farmacológico , Linfócitos T Reguladores
5.
Sci Rep ; 10(1): 8587, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444829

RESUMO

Systemic toxicity caused by conventional chemotherapy is often regarded as one of the major challenges in the treatment of cancer. Over years, the trigger-based modality has gained much attention as it holds the spatiotemporal control over release and internalization of the drug. In this article, we are reporting an increase in the anti-tumor efficacy of curcumin due to ultrasound pulses. MDA MB 231 breast cancer and B16F10 melanoma cells were incubated with lecithin-based curcumin encapsulated nanoemulsions and exposed to ultrasound in the presence and absence of microbubble. Ultrasound induced sonoporation enhanced the cytotoxicity of curcumin in MDA MB 231 and B16F10 cancer cells in the presence of microbubble by 100- and 64-fold, respectively. To study the spatiotemporal delivery of curcumin, we developed B16F10 melanoma subcutaneous tumor on both the flanks of C57BL/6 mice but only the right tumor was exposed to ultrasound. Insonation of the right tumor spatially enhanced the cytotoxicity and enabled the substantial regression of the right tumor compared to the unexposed left tumor which grew continuously in size. This study showed that the ultrasound has the potential to target and increase the drug's throughput to the tumor and enable effective treatment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Curcumina/administração & dosagem , Sistemas de Liberação de Medicamentos , Lecitinas/química , Melanoma Experimental/tratamento farmacológico , Ultrassonografia/métodos , Administração Oral , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Curcumina/química , Curcumina/farmacocinética , Feminino , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Micelas , Nanotecnologia , Ratos , Ratos Wistar , Análise Espaço-Temporal , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Front Public Health ; 8: 567689, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585378

RESUMO

Indian communities have the ancient cultural practice of gentle oil massage for infants which has been shown to play a beneficial role in neuro-motor development. The concept of incorporating nanosized liposomes of micronutrients (i.e., iron, folate, vitamin B12, and vitamin D) in the body oil leverages this practice for transdermal supplementation of essential micro-nutrients. This paper describes the experience of developing an intervention in the form of body oil containing nanosized liposomes of iron and micro-nutrients built on the social context of infant oil massage using a theory of change approach. The process of development of the intervention has been covered into stages such as design, decide and implement. The design phase describes how the idea of nanosized liposomal encapsulated micronutrient fortified (LMF) body oil was conceptualized and how its feasibility was assessed through initial formative work in the community. The decide phase describes steps involved while scaling up technology from laboratory to community level. The implementation phase describes processes while implementing the intervention of LMF oil in a community-based randomized controlled study. Overall, the theory of change approach helps to outline the various intermediate steps and challenges while translating novel technologies for transdermal nutrient fortification to community level. In our experience, adaptation in the technology for large scale up, formative work and pilot testing of innovation at community level were important processes that helped in shaping the innovation. Meticulous mapping of these processes and experiences can be a useful guide for translating similar innovations.


Assuntos
Desnutrição , Micronutrientes , Criança , Alimentos Fortificados , Humanos , Lactente , Lipossomos , Massagem
7.
J Pharmacol Exp Ther ; 370(3): 876-893, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30988010

RESUMO

Chemotherapy is limited by the low availability of drug at the tumor site and drug resistance by the tumor. In this report we describe a combination therapy for codelivery of two anticancer drugs with spatiotemporal control by ultrasound pulses. We developed curcumin and topotecan-coencapsulated nanoconjugates Cur_Tpt_NC.MB to have an ultrasound contrast property. MDA MB 231 and B16F10 cells were incubated with Cur_Tpt_NC.MB and exposed to ultrasound. Ultrasound exposure reduced the IC50 concentration of topotecan and curcumin significantly (P < 0.05) compared with free drug. Antitumor efficacy study of the Cur_Tpt_NC.MB in B16F10 melanoma tumor-bearing C57BL/6 mice showed that ultrasound exposure of right tumor reduced growth by 3.5 times compared with the unexposed left tumor of same mice and 14.8 times compared with a group treated with a physical mixture of drugs. These results suggest that the nanotherapeutic system we developed induces site-specific inhibition of tumor growth at a high rate and has the potential to be used as a therapeutic regimen for spatiotemporal delivery of dual drugs for treatment of cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos Fitogênicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Curcumina/administração & dosagem , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas , Neoplasias Experimentais/tratamento farmacológico , Topotecan/administração & dosagem , Ultrassom
8.
Nanomedicine (Lond) ; 14(7): 871-887, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30895865

RESUMO

AIM: To provide multilayered combination therapies encompassing nanoparticles and organic peptides and to assess their efficacy in the treatment of arthritis. MATERIALS & METHODS: Fish oil protein (FP) was isolated from fish oil glands and tagged with spherical gold nanoparticles (GNPs). Tagged GNPs were encapsulated in DPPC liposomes (FP-GNP-DPPC) and characterized. RESULTS & CONCLUSION: FP increased the hydrophilicity of GNP, while encapsulation of FP-GNP within liposomes increased the hydrophobicity. In vitro release studies of FP-GNP-DPPC exhibited sustained release of FP in simulated synovial fluid. FP-GNP-DPPC injected into intra-articular joints of rats displayed anti-osteoarthritic effects in osteoarthritic rat model. This is the first study to report the anti-osteoarthritic activity of FP and DPPC encapsulated FP-GNP liposomes.


Assuntos
Óleos de Peixe/química , Ouro/química , Articulações/efeitos dos fármacos , Nanopartículas Metálicas/química , Osteoartrite/tratamento farmacológico , Proteínas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cordados , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Tamanho da Partícula , Fosfolipídeos/química , Proteínas/farmacologia , Ratos Wistar , Propriedades de Superfície
9.
Sci Rep ; 8(1): 16122, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382116

RESUMO

Oral folate fortification has been successful in many developed nations, however, developing countries still face low compliance and high incidence of folate deficiency associated with low birth weight infants and preterm deliveries. We report safe and efficient approach for transdermal systemic folate delivery using fluidising liposomes (120 ± 4 nm) stabilised within 3D matrix of naturally occurring cosmetic bases: Fuller's earth and henna with room temperature stability. The proof of stratum corneum fluidisation was established ex-vivo by Langmuir-Blodgett film, FTIR and confocal imaging in rat skin. In-vivo topical application in rats showed 11-fold increase in plasma folate within 2 hr, confirming systemic delivery through skin. Efficacy study in folate deficient rats over 4 weeks showed significantly higher plasma levels compared to oral delivery with significant skin depot. Sub-acute toxicity studies in rats at 750-fold higher doses showed safety after 4 weeks daily application. Primary irritation patch test on 25 healthy human volunteers proved non-irritant nature of the nutricosmetics. The technology is first demonstration of transdermal folate fortification with nanosized liposome incorporated in cosmetics, without synthetic surfactants/ethanol or need of external energy. The platform technology opens the possibility of delivering multiple nutrients systemically through skin and can be scaled for affordable community fortification.


Assuntos
Cosméticos/administração & dosagem , Sistemas de Liberação de Medicamentos , Deficiência de Ácido Fólico/terapia , Ácido Fólico/administração & dosagem , Alimentos Fortificados , Administração Cutânea , Adolescente , Adulto , Anemia/terapia , Animais , Derme/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Ácido Fólico/farmacologia , Voluntários Saudáveis , Humanos , Lipossomos , Masculino , Pessoa de Meia-Idade , Nanotubos/química , Nanotubos/ultraestrutura , Tamanho da Partícula , Ratos Sprague-Dawley , Adulto Jovem
11.
Integr Biol (Camb) ; 9(6): 555-565, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28513646

RESUMO

Magnetic liposome-mediated combined chemotherapy and hyperthermia is gaining importance as an effective therapeutic modality for cancer. However, control and maintenance of optimum hyperthermia are major challenges in clinical settings due to the overheating of tissues. To overcome this problem, we developed a novel magnetic liposomes formulation co-entrapping a dextran coated biphasic suspension of La0.75Sr0.25MnO3 (LSMO) and iron oxide (Fe3O4) nanoparticles for self-controlled hyperthermia and chemotherapy. However, the general apprehension about biocompatibility and safety of the newly developed formulation needs to be addressed. In this work, in vitro and in vivo biocompatibility and therapeutic evaluation studies of the novel magnetic liposomes are reported. Biocompatibility study of the magnetic liposomes formulation was carried out to evaluate the signs of preliminary systemic toxicity, if any, following intravenous administration of the magnetic liposomes in Swiss mice. Therapeutic efficacy of the magnetic liposomes formulation was evaluated in the fibrosarcoma tumour bearing mouse model. Fibrosarcoma tumour-bearing mice were subjected to hyperthermia following intratumoral injection of single or double doses of the magnetic liposomes with or without chemotherapeutic drug paclitaxel. Hyperthermia (three spurts, each at 3 days interval) with drug loaded magnetic liposomes following single dose administration reduced the growth of tumours by 2.5 fold (mean tumour volume 2356 ± 550 mm3) whereas the double dose treatment reduced the tumour growth by 3.6 fold (mean tumour volume 1045 ± 440 mm3) compared to their corresponding control (mean tumour volume 3782 ± 515 mm3). At the end of the tumour efficacy studies, the presence of MNPs was studied in the remnant tumour tissues and vital organs of the mice. No significant leaching or drainage of the magnetic liposomes during the study was observed from the tumour site to the other vital organs of the body, suggesting again the potential of the novel magnetic liposomes formulation for possibility of developing as an effective modality for treatment of drug resistant or physiologically vulnerable cancer.


Assuntos
Hipertermia Induzida/métodos , Lipossomos/uso terapêutico , Magnetismo , Neoplasias/terapia , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Materiais Biocompatíveis/uso terapêutico , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Humanos , Lipossomos/administração & dosagem , Lipossomos/toxicidade , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/toxicidade , Teste de Materiais , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Paclitaxel/administração & dosagem , Sarcoma Experimental/tratamento farmacológico , Sarcoma Experimental/metabolismo , Sarcoma Experimental/terapia , Distribuição Tecidual
12.
Nano Lett ; 15(2): 842-8, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25554860

RESUMO

We report biodegradable plasmon resonant liposome gold nanoparticles (LiposAu NPs) capable of killing cancer cells through photothermal therapy. The pharmacokinetic study of LiposAu NPs performed in a small animal model indicates in situ degradation in hepatocytes and further getting cleared through the hepato-biliary and renal route. Further, the therapeutic potential of LiposAu NPs tested in mouse tumor xenograft model using NIR laser (750 nm) illumination resulted in complete ablation of the tumor mass, thus prolonging disease-free survival.


Assuntos
Materiais Biocompatíveis , Ouro/química , Hipertermia Induzida , Lipossomos , Nanopartículas Metálicas/uso terapêutico , Neoplasias/terapia , Fototerapia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Nanosci Nanotechnol ; 14(6): 4082-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24738355

RESUMO

Dual stimuli pH and temperature-responsive nanohydrogels based on poly(N-isopropylacrylamide)-chitosan have been synthesized. Fe3O4 magnetic nanoparticles (NPs) (-12 nm) have been incorporated into hydrogels to achieve temperature optimized magnetic nanohydrogel (MNHG) for magnetic hyperthermia with lower critical solution temperature, LCST > 42 degrees C. The composite was further investigated for its potential application in drug delivery and in vitro cancer cell cytotoxicity. Water-bath assisted drug release studies were carried out using anti-cancer drug doxorubicin (DOX) in acetate buffer medium (pH - 4.6) to mimic tumor cell environment which is slightly acidic in nature. The pH and temperature responsiveness of the system was demonstrated by DOX release under different conditions. The released amount of DOX was found to be nearly 4 microg/mg above hyperthermia temperature (-42 degrees C) as opposed to only 1.9 microg/mg of MNHG at physiological temperature (37 degrees C) under acidic environment (pH - 4.6). Further, AC magnetic field (AMF) induced heating of NPs entrapped inside hydrogels showed appreciable reduction of cell population in human breast (MCF-7) and cervical carcinoma (HeLa) cell lines for given duration of field exposures. Quantitatively, death percentages of HeLa cells were nearly 35 and 45% while for MCF-7, these were 20 and 70% when exposed to AMF for 10 and 30 min, respectively. Further the cell killing efficacy of MNHG loaded with DOX was assessed under AMF using HeLa cell lines. The AMF induced heat triggered DOX release from the MNHG which enhances the cell death up to 85% due to combined effect of thermo-chemotherapeutics. The present system with both pH and temperature responsivity serves as a promising candidate for a combination therapy.


Assuntos
Doxorrubicina/administração & dosagem , Hidrogéis/química , Hipertermia Induzida/métodos , Magnetoterapia/métodos , Nanopartículas de Magnetita/uso terapêutico , Nanocápsulas/administração & dosagem , Neoplasias Experimentais/terapia , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas de Magnetita/química , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Neoplasias Experimentais/patologia , Temperatura , Resultado do Tratamento
14.
Nanoscale ; 6(2): 916-23, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24281647

RESUMO

Plasmon resonant gold nanoparticles of various sizes and shapes have been extensively researched for their applications in imaging, drug delivery and photothermal therapy (PTT). However, their ability to degrade after performing the required function is essential for their application in healthcare. When combined with biodegradable liposomes, they appear to have better degradation capabilities. They degrade into smaller particles of around 5 nm that are eligible candidates for renal clearance. Distearoyl phosphatidyl choline : cholesterol (DSPC : CHOL, 8 : 2 wt%) liposomes have been synthesized and coated with gold by in situ reduction of chloro-auric acid. These particles of size 150-200 nm are analyzed for their stability, degradation capacity, model drug-release profile, biocompatibility and photothermal effects on cancer cells. It is observed that when these particles are subjected to low power continuous wave near infra-red (NIR) laser for more than 10 min, they degrade into small gold nanoparticles of size 5 nm. Also, the gold coated liposomes appear to have excellent biocompatibility and high efficiency to kill cancer cells through photothermal transduction. These novel materials are also useful in imaging using specific NIR dyes, thus exhibiting multifunctional properties for theranostics of cancer.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Ouro/química , Lipossomos/química , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/síntese química , Meios de Contraste/química , Feminino , Fluoresceínas/química , Fluoresceínas/metabolismo , Humanos , Raios Infravermelhos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/toxicidade , Tamanho da Partícula , Fototerapia , Tomografia Computadorizada por Raios X
15.
Nanomedicine (Lond) ; 9(7): 955-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24102326

RESUMO

AIM: The aim was to develop magnetic nanovesicles for chemotherapy and self-controlled hyperthermia that prevent overheating of tissues. MATERIALS & METHODS: Magnetic nanovesicles containing paclitaxel and a dextran-coated biphasic suspension of La0.75Sr0.25MnO3 and Fe3O4 nanoparticles (magnetic nanoparticles) were developed. RESULTS: Encapsulation efficiencies of magnetic nanoparticles and paclitaxel were 67 ± 5 and 83 ± 3%, respectively. Sequential release performed at 37°C for 1 h followed by 44°C for another 1 h (as expected for intratumoral injection), showed a cumulative release of 6.6% (109.6 µg), which was above the IC50 of the drug. In an alternating current magnetic field, the temperature remained controlled at 44°C and a synergistic cytotoxicity of paclitaxel and hyperthermia was observed in MCF-7 cells. CONCLUSION: Magnetic nanovesicles containing biphasic suspensions La0.75Sr0.25MnO3 and Fe3O4 nanoparticles encapsulating paclitaxel have potential for combined self-controlled hyperthermia and chemotherapy.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita/química , Paclitaxel/uso terapêutico , Sobrevivência Celular , Dextranos/química , Óxido Ferroso-Férrico/química , Humanos , Concentração Inibidora 50 , Células MCF-7 , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Transmissão , Paclitaxel/química
16.
Exp Parasitol ; 131(3): 292-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22561991

RESUMO

Curcuminoids are poorly water-soluble compounds with promising antimalarial activity. To overcome some of the drawbacks of curcuminoids, we explored the potential of liposomes for the intravenous delivery of curcuminoids in a model of mouse malaria. The curcuminoids-loaded liposomes were formulated from phosphatidylcholine (soy PC) by the thin-film hydration method. Antimalarial activity of curcuminoids-loaded liposomes alone and in combination with α/ß arteether when administered intravenously, was evaluated in Plasmodium berghei infected mice. Animals treated with curcuminoids-loaded liposomes showed lower parasitemia and higher survival when compared to control group (no treatment). Importantly, the combination therapy of curcuminoids-loaded liposomes (40 mg/kg body wt) along with α/ß arteether (30 mg/kg body wt) was able to not only cure infected mice but also prevented recrudescence. These data suggest that curcuminoids-loaded liposomes may show promise as a formulation for anti-malarial therapy.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Curcuma/química , Malária/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Plasmodium berghei/efeitos dos fármacos , Animais , Curcumina/administração & dosagem , Curcumina/análogos & derivados , Diarileptanoides , Modelos Animais de Doenças , Hemólise/efeitos dos fármacos , Humanos , Lipossomos , Malária/prevenção & controle , Camundongos , Fitoterapia , Raízes de Plantas/química , Polifenóis/administração & dosagem
18.
J Biomed Mater Res B Appl Biomater ; 81(1): 12-22, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16924619

RESUMO

In this study, lauric acid-coated, superparamagnetic, nanoparticle-based magnetic fluids of different ferrites (Fe(3)O(4), MnFe(2)O(4), and CoFe(2)O(4)) were prepared and compared in terms of heating ability and biocompatibility to evaluate the feasibility of use in hyperthermia treatment of cancer. All the magnetic fluids prepared had particles of average sizes 9-11 nm. Heating ability of these magnetic fluids was evaluated by calorimetric measurement of specific absorption rate (SAR) at 300 kHz frequency and 15 kA/m field. Fe(3)O(4) and MnFe(2)O(4) showed higher SAR (120 and 97 W/g of ferrite, respectively) than CoFe(2)O(4) (37 W/g of ferrite). In vitro study on BHK 21 cell lines showed dose-dependent cell viability for all the magnetic fluids. Threshold-biocompatible ferrite concentration for all the magnetic fluids was 0.1 mg/mL. Above 0.2 mg/mL, CoFe(2)O(4) was more toxic than the other magnetic fluids. On intravenous injection of different doses (50, 200, and 400 mg/kg body weight) of magnetic fluids in mice, no significant changes in hematological and biochemical parameters were observed for Fe(3)O(4) and MnFe(2)O(4). With CoFe(2)O(4), an increase in SGPT levels at a dose rate of 400 mg/kg body weight was observed, indicating its mild hepatotoxic effect. However, histology of different vital organs showed no pathological changes for all the three magnetic fluids. Further, long term in vivo evaluation of biocompatibility of the lauric acid-coated ferrites is warranted. This study shows that lauric acid-coated, superparamagnetic Fe(3)O(4) and MnFe(2)O(4) may be used for hyperthermia treatment and are to be preferred over CoFe(2)O(4).


Assuntos
Materiais Revestidos Biocompatíveis/efeitos adversos , Compostos Férricos/química , Calefação , Hipertermia Induzida , Nanopartículas/efeitos adversos , Animais , Calorimetria , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Cricetinae , Ferrocianetos/química , Compostos Ferrosos/química , Histocitoquímica , Ácidos Láuricos/química , Teste de Materiais , Camundongos , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA