Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(10): e1010918, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36302035

RESUMO

In order to infect a new host species, the pathogen must evolve to enhance infection and transmission in the novel environment. Although we often think of evolution as a process of accumulation, it is also a process of loss. Here, we document an example of regressive evolution of an effector activity in the Irish potato famine pathogen (Phytophthora infestans) lineage, providing evidence that a key sequence motif in the effector PexRD54 has degenerated following a host jump. We began by looking at PexRD54 and PexRD54-like sequences from across Phytophthora species. We found that PexRD54 emerged in the common ancestor of Phytophthora clade 1b and 1c species, and further sequence analysis showed that a key functional motif, the C-terminal ATG8-interacting motif (AIM), was also acquired at this point in the lineage. A closer analysis showed that the P. mirabilis PexRD54 (PmPexRD54) AIM is atypical, the otherwise-conserved central residue mutated from a glutamate to a lysine. We aimed to determine whether this PmPexRD54 AIM polymorphism represented an adaptation to the Mirabilis jalapa host environment. We began by characterizing the M. jalapa ATG8 family, finding that they have a unique evolutionary history compared to previously characterized ATG8s. Then, using co-immunoprecipitation and isothermal titration calorimetry assays, we showed that both full-length PmPexRD54 and the PmPexRD54 AIM peptide bind weakly to the M. jalapa ATG8s. Through a combination of binding assays and structural modelling, we showed that the identity of the residue at the position of the PmPexRD54 AIM polymorphism can underpin high-affinity binding to plant ATG8s. Finally, we conclude that the functionality of the PexRD54 AIM was lost in the P. mirabilis lineage, perhaps owing to as-yet-unknown selection pressure on this effector in the new host environment.


Assuntos
Mirabilis , Phytophthora infestans , Solanum tuberosum , Doenças das Plantas , Phytophthora infestans/genética , Especificidade de Hospedeiro
2.
PLoS Biol ; 17(7): e3000373, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31329577

RESUMO

Autophagy-related protein 8 (ATG8) is a highly conserved ubiquitin-like protein that modulates autophagy pathways by binding autophagic membranes and a number of proteins, including cargo receptors and core autophagy components. Throughout plant evolution, ATG8 has expanded from a single protein in algae to multiple isoforms in higher plants. However, the degree to which ATG8 isoforms have functionally specialized to bind distinct proteins remains unclear. Here, we describe a comprehensive protein-protein interaction resource, obtained using in planta immunoprecipitation (IP) followed by mass spectrometry (MS), to define the potato ATG8 interactome. We discovered that ATG8 isoforms bind distinct sets of plant proteins with varying degrees of overlap. This prompted us to define the biochemical basis of ATG8 specialization by comparing two potato ATG8 isoforms using both in vivo protein interaction assays and in vitro quantitative binding affinity analyses. These experiments revealed that the N-terminal ß-strand-and, in particular, a single amino acid polymorphism-underpins binding specificity to the substrate PexRD54 by shaping the hydrophobic pocket that accommodates this protein's ATG8-interacting motif (AIM). Additional proteomics experiments indicated that the N-terminal ß-strand shapes the broader ATG8 interactor profiles, defining interaction specificity with about 80 plant proteins. Our findings are consistent with the view that ATG8 isoforms comprise a layer of specificity in the regulation of selective autophagy pathways in plants.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Autofagia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/genética , Imunoprecipitação/métodos , Espectrometria de Massas/métodos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/classificação , Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Conformação Proteica em Folha beta , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteômica/métodos , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
3.
New Phytol ; 222(1): 438-454, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30536576

RESUMO

The potato blight agent Phytophthora infestans secretes a range of RXLR effectors to promote disease. Recent evidence indicates that some effectors suppress early pattern-triggered immunity (PTI) following perception of microbe-associated molecular patterns (MAMPs). Phytophthora infestans effector PiSFI3/Pi06087/PexRD16 has been previously shown to suppress MAMP-triggered pFRK1-Luciferase reporter gene activity. How PiSFI3 suppresses immunity is unknown. We employed yeast-two-hybrid (Y2H) assays, co-immunoprecipitation, transcriptional silencing by RNA interference and virus-induced gene silencing (VIGS), and X-ray crystallography for structure-guided mutagenesis, to investigate the function of PiSFI3 in targeting a plant U-box-kinase protein (StUBK) to suppress immunity. We discovered that PiSFI3 is active in the host nucleus and interacts in yeast and in planta with StUBK. UBK is a positive regulator of specific PTI pathways in both potato and Nicotiana benthamiana. Importantly, it contributes to early transcriptional responses that are suppressed by PiSFI3. PiSFI3 forms an unusual trans-homodimer. Mutation to disrupt dimerization prevents nucleolar localisation of PiSFI3 and attenuates both its interaction with StUBK and its ability to enhance P. infestans leaf colonisation. PiSFI3 is a 'WY-domain' RXLR effector that forms a novel trans-homodimer which is required for its ability to suppress PTI via interaction with the U-box-kinase protein StUBK.


Assuntos
Phytophthora infestans/metabolismo , Proteínas Quinases/metabolismo , Proteínas/metabolismo , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia , Transcrição Gênica , Apoptose/efeitos dos fármacos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Flagelina/farmacologia , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Phytophthora infestans/patogenicidade , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Proteínas Quinases/química , Multimerização Proteica , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/genética , Virulência
4.
J Biol Chem ; 291(38): 20270-20282, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27458016

RESUMO

Filamentous plant pathogens deliver effector proteins to host cells to promote infection. The Phytophthora infestans RXLR-type effector PexRD54 binds potato ATG8 via its ATG8 family-interacting motif (AIM) and perturbs host-selective autophagy. However, the structural basis of this interaction remains unknown. Here, we define the crystal structure of PexRD54, which includes a modular architecture, including five tandem repeat domains, with the AIM sequence presented at the disordered C terminus. To determine the interface between PexRD54 and ATG8, we solved the crystal structure of potato ATG8CL in complex with a peptide comprising the effector's AIM sequence, and we established a model of the full-length PexRD54-ATG8CL complex using small angle x-ray scattering. Structure-informed deletion of the PexRD54 tandem domains reveals retention of ATG8CL binding in vitro and in planta This study offers new insights into structure/function relationships of oomycete RXLR effectors and how these proteins engage with host cell targets to promote disease.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Phytophthora infestans , Doenças das Plantas , Proteínas de Plantas , Solanum tuberosum , Família da Proteína 8 Relacionada à Autofagia/química , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Cristalografia por Raios X , Phytophthora infestans/química , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína , Solanum tuberosum/química , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
5.
Elife ; 52016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26765567

RESUMO

Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses.


Assuntos
Autofagia , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Phytophthora infestans/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Solanum tuberosum/microbiologia , Doenças das Plantas/imunologia , Ligação Proteica , Solanum tuberosum/imunologia
6.
Mol Plant Microbe Interact ; 27(7): 624-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24678835

RESUMO

Both plants and animals rely on nucleotide-binding domain and leucine-rich repeat-containing (NB-LRR or NLR) proteins to respond to invading pathogens and activate immune responses. How plant NB-LRR proteins respond to pathogens is poorly understood. We undertook a gain-of-function random mutagenesis screen of the potato NB-LRR immune receptor R3a to study how this protein responds to the effector protein AVR3a from the oomycete pathogen Phytophthora infestans. R3a response can be extended to the stealthy AVR3aEM isoform of the effector while retaining recognition of AVR3aKI. Each one of eight single amino acid mutations is sufficient to expand the R3a response to AVR3aEM and other AVR3a variants. These mutations occur across the R3a protein, from the N terminus to different regions of the LRR domain. Further characterization of these R3a mutants revealed that at least one of them was sensitized, exhibiting a stronger response than the wild-type R3a protein to AVR3aKI. Remarkably, the N336Y mutation, near the R3a nucleotide-binding pocket, conferred response to the effector protein PcAVR3a4 from the vegetable pathogen P. capsici. This work contributes to understanding how NB-LRR receptor specificity can be modulated. Together with knowledge of pathogen effector diversity, this strategy can be exploited to develop synthetic immune receptors.


Assuntos
Phytophthora/fisiologia , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Regulação da Expressão Gênica de Plantas/imunologia , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia
7.
Science ; 343(6170): 552-5, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24482481

RESUMO

Accelerated gene evolution is a hallmark of pathogen adaptation following a host jump. Here, we describe the biochemical basis of adaptation and specialization of a plant pathogen effector after its colonization of a new host. Orthologous protease inhibitor effectors from the Irish potato famine pathogen, Phytophthora infestans, and its sister species, Phytophthora mirabilis, which is responsible for infection of Mirabilis jalapa, are adapted to protease targets unique to their respective host plants. Amino acid polymorphisms in both the inhibitors and their target proteases underpin this biochemical specialization. Our results link effector specialization to diversification and speciation of this plant pathogen.


Assuntos
Mirabilis/enzimologia , Mirabilis/microbiologia , Phytophthora infestans/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/microbiologia , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Evolução Molecular , Filogenia , Phytophthora infestans/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Polimorfismo Genético , Proteínas Secretadas Inibidoras de Proteinases/classificação , Proteínas Secretadas Inibidoras de Proteinases/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA