Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Science ; 376(6596): 1006-1012, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617386

RESUMO

Temporary postoperative cardiac pacing requires devices with percutaneous leads and external wired power and control systems. This hardware introduces risks for infection, limitations on patient mobility, and requirements for surgical extraction procedures. Bioresorbable pacemakers mitigate some of these disadvantages, but they demand pairing with external, wired systems and secondary mechanisms for control. We present a transient closed-loop system that combines a time-synchronized, wireless network of skin-integrated devices with an advanced bioresorbable pacemaker to control cardiac rhythms, track cardiopulmonary status, provide multihaptic feedback, and enable transient operation with minimal patient burden. The result provides a range of autonomous, rate-adaptive cardiac pacing capabilities, as demonstrated in rat, canine, and human heart studies. This work establishes an engineering framework for closed-loop temporary electrotherapy using wirelessly linked, body-integrated bioelectronic devices.


Assuntos
Implantes Absorvíveis , Estimulação Cardíaca Artificial , Marca-Passo Artificial , Cuidados Pós-Operatórios , Tecnologia sem Fio , Animais , Cães , Frequência Cardíaca , Humanos , Cuidados Pós-Operatórios/instrumentação , Ratos
2.
Ann LGBTQ Public Popul Health ; 3(2): 129-134, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37885620

RESUMO

Transgender and gender diverse (TGD) adolescents and young adults (AYA) face heightened risks of cancer due to cissexism and transphobia in healthcare, low cancer screening rates, limited knowledge and awareness of cancer risk and screenings, poor healthcare experiences, and exposure to sexually transmitted infections (STIs). Despite this, TGD AYA cancer risk is relatively unexamined in oncology research. To intervene early and mitigate risk, we require holistic understandings of cancer risk among TGD AYA. This research brief engages with an interdisciplinary knowledge base to identify gaps and limitations warranting critical attention by TGD AYA and cancer scholars. The current literature on TGD AYA risks for cancer are explored with specific attention to the social environment and its impact on cancer risk. The brief ends with a call to action for a paradigmatic shift to promote inclusive, innovative, and interdisciplinary cancer research with TGD AYA.

3.
Nat Mater ; 20(11): 1559-1570, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34326506

RESUMO

Flexible electronic/optoelectronic systems that can intimately integrate onto the surfaces of vital organ systems have the potential to offer revolutionary diagnostic and therapeutic capabilities relevant to a wide spectrum of diseases and disorders. The critical interfaces between such technologies and living tissues must provide soft mechanical coupling and efficient optical/electrical/chemical exchange. Here, we introduce a functional adhesive bioelectronic-tissue interface material, in the forms of mechanically compliant, electrically conductive, and optically transparent encapsulating coatings, interfacial layers or supporting matrices. These materials strongly bond both to the surfaces of the devices and to those of different internal organs, with stable adhesion for several days to months, in chemistries that can be tailored to bioresorb at controlled rates. Experimental demonstrations in live animal models include device applications that range from battery-free optoelectronic systems for deep-brain optogenetics and subdermal phototherapy to wireless millimetre-scale pacemakers and flexible multielectrode epicardial arrays. These advances have immediate applicability across nearly all types of bioelectronic/optoelectronic system currently used in animal model studies, and they also have the potential for future treatment of life-threatening diseases and disorders in humans.


Assuntos
Implantes Absorvíveis , Adesivos , Animais , Condutividade Elétrica , Eletrônica
4.
Nat Commun ; 11(1): 5990, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239608

RESUMO

Bioresorbable electronic stimulators are of rapidly growing interest as unusual therapeutic platforms, i.e., bioelectronic medicines, for treating disease states, accelerating wound healing processes and eliminating infections. Here, we present advanced materials that support operation in these systems over clinically relevant timeframes, ultimately bioresorbing harmlessly to benign products without residues, to eliminate the need for surgical extraction. Our findings overcome key challenges of bioresorbable electronic devices by realizing lifetimes that match clinical needs. The devices exploit a bioresorbable dynamic covalent polymer that facilitates tight bonding to itself and other surfaces, as a soft, elastic substrate and encapsulation coating for wireless electronic components. We describe the underlying features and chemical design considerations for this polymer, and the biocompatibility of its constituent materials. In devices with optimized, wireless designs, these polymers enable stable, long-lived operation as distal stimulators in a rat model of peripheral nerve injuries, thereby demonstrating the potential of programmable long-term electrical stimulation for maintaining muscle receptivity and enhancing functional recovery.


Assuntos
Implantes Absorvíveis , Terapia por Estimulação Elétrica/instrumentação , Traumatismos dos Nervos Periféricos/terapia , Poliuretanos/química , Tecnologia sem Fio/instrumentação , Animais , Modelos Animais de Doenças , Terapia por Estimulação Elétrica/métodos , Feminino , Humanos , Teste de Materiais , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Ratos , Regeneração , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia
5.
Sci Transl Med ; 10(470)2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518611

RESUMO

Exposure to electromagnetic radiation can have a profound impact on human health. Ultraviolet (UV) radiation from the sun causes skin cancer. Blue light affects the body's circadian melatonin rhythm. At the same time, electromagnetic radiation in controlled quantities has beneficial use. UV light treats various inflammatory skin conditions, and blue light phototherapy is the standard of care for neonatal jaundice. Although quantitative measurements of exposure in these contexts are important, current systems have limited applicability outside of laboratories because of an unfavorable set of factors in bulk, weight, cost, and accuracy. We present optical metrology approaches, optoelectronic designs, and wireless modes of operation that serve as the basis for miniature, low-cost, and battery-free devices for precise dosimetry at multiple wavelengths. These platforms use a system on a chip with near-field communication functionality, a radio frequency antenna, photodiodes, supercapacitors, and a transistor to exploit a continuous accumulation mechanism for measurement. Experimental and computational studies of the individual components, the collective systems, and the performance parameters highlight the operating principles and design considerations. Evaluations on human participants monitored solar UV exposure during outdoor activities, captured instantaneous and cumulative exposure during blue light phototherapy in neonatal intensive care units, and tracked light illumination for seasonal affective disorder phototherapy. Versatile applications of this dosimetry platform provide means for consumers and medical providers to modulate light exposure across the electromagnetic spectrum in a way that can both reduce risks in the context of excessive exposure and optimize benefits in the context of phototherapy.


Assuntos
Fontes de Energia Elétrica , Miniaturização/instrumentação , Fototerapia , Dosímetros de Radiação , Exposição à Radiação , Monitoramento de Radiação/instrumentação , Luz Solar , Tecnologia sem Fio , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Raios Ultravioleta
6.
Sci Adv ; 2(8): e1600418, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27493994

RESUMO

Recent advances in materials, mechanics, and electronic device design are rapidly establishing the foundations for health monitoring technologies that have "skin-like" properties, with options in chronic (weeks) integration with the epidermis. The resulting capabilities in physiological sensing greatly exceed those possible with conventional hard electronic systems, such as those found in wrist-mounted wearables, because of the intimate skin interface. However, most examples of such emerging classes of devices require batteries and/or hard-wired connections to enable operation. The work reported here introduces active optoelectronic systems that function without batteries and in an entirely wireless mode, with examples in thin, stretchable platforms designed for multiwavelength optical characterization of the skin. Magnetic inductive coupling and near-field communication (NFC) schemes deliver power to multicolored light-emitting diodes and extract digital data from integrated photodetectors in ways that are compatible with standard NFC-enabled platforms, such as smartphones and tablet computers. Examples in the monitoring of heart rate and temporal dynamics of arterial blood flow, in quantifying tissue oxygenation and ultraviolet dosimetry, and in performing four-color spectroscopic evaluation of the skin demonstrate the versatility of these concepts. The results have potential relevance in both hospital care and at-home diagnostics.


Assuntos
Técnicas Biossensoriais , Eletrônica , Fenômenos Fisiológicos da Pele , Pele , Tecnologia sem Fio , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Pressão Sanguínea , Eletrônica/instrumentação , Eletrônica/métodos , Epiderme/fisiologia , Frequência Cardíaca , Oximetria/instrumentação , Oximetria/métodos , Dosímetros de Radiação , Fluxo Sanguíneo Regional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA