RESUMO
We report normal-incidence planar GeSn resonant-cavity-enhanced photodetectors (RCE-PDs) with a lateral p-i-n homojunction configuration on a silicon-on-insulator (SOI) platform for short-wave infrared (SWIR) integrated photonics. The buried oxide of the SOI platform and the deposited SiO2 layer serve as the bottom and top reflectors, respectively, creating a vertical cavity for enhancing the optical responsivity. The planar p-i-n diode structure is favorable for complementary-metal-oxide-semiconductor-compatible, large-scale integration. With the bandgap reduction enabled by the 4.2% Sn incorporation into the GeSn active layer, the photodetection range extends to 1960 nm. The promising results demonstrate that the developed planar GeSn RCE-PDs are potential candidates for SWIR integrated photonics.
RESUMO
Microalgae possess the ability to grow and glean nutrients from wastewater; such wastewater-grown biomass can be used as a biofertilizer for crops. The present investigation was undertaken to evaluate two formulations (formulation with unicellular microalgae (MC1) and formulation with filamentous microalgae (MC2); T4 and T5, respectively), prepared using wastewater-grown microalgal biomass, as a biofertilizer (after mixing with vermiculite/compost as a carrier) in wheat crop (Triticum aestivum L. HD2967) under controlled conditions. The highest values of available nitrogen (N), phosphorus (P), and potassium (K) in soil and nitrogen-fixing potential were recorded in treatment T5 (75% N + full-dose PK + formulation with filamentous microalgae (MC2). Microbial biomass carbon was significantly enhanced by 31.8-67.0% in both the inoculated treatments over control (recommended dose of fertilizers), with highest values in T4 (75% N + full-dose PK + formulation with unicellular microalgae (MC1)). Both the microalgal formulations significantly increased the N, P, and K content of roots, shoots, and grains, and the highest total N content of 3.56% in grains was observed in treatment T5. At harvest stage, the treatments inoculated with microalgal formulations (T4 and T5) recorded a 7.4-33% increase in plant dry weight and up to 10% in spike weight. The values of 1000-grain weight showed an enhancement of 5.6-8.4%, compared with T1 (recommended doses of fertilizers). A positive correlation was observed between soil nutrient availability at mid crop stage and plant biometrical parameters at harvest stage. This study revealed the promise of such microalgal consortia as a biofertilizer for 25% N savings and improved yields of wheat crop.