RESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is not only one of the four highest malignancies, but also the principal reason of cancer-related death worldwide, yet no effective medication for anti-HCC is available. Stachydrine hydrochloride (SH), an alkaloid component in Panzeria alaschanica Kupr, exhibits potent antitumor activity in breast cancer. However, the anti-HCC effects of SH remain unknown. PURPOSE: Our study assessed the therapeutic effect of SH on HCC and tried to clarify the mechanisms by which it ameliorates HCC. No studies involving using SH for anti-HCC activity and molecular mechanism have been reported yet. STUDY DESIGN/METHODS: We examined the cell viability of SH on HCC cells by MTT assay. The effect of SH on cell autophagy in HCC cells was verified by Western blot and Immunofluorescence test. Flow cytometry was performed to assess cell-cycle arrest effects. Cell senescence was detected using ß-Gal staining and Western blot, respectively. An inhibitor or siRNA of autophagy, i.e., CQ and si LC-3B, were applied to confirm the role of autophagy acted in the anti-cancer function of SH. Protein expression in signaling pathways was detected by Western blot. Besides, molecular docking combined with cellular thermal shift assay (CETSA) was used for analysis. Patient-derived xenograft (PDX) model were built to explore the inhibitory effect of SH in HCC in vivo. RESULTS: In vitro studies showed that SH possessed an anti-HCC effect by inducing autophagy, cell-cycle arrest and promoting cell senescence. Specifically, SH induced autophagy with p62 and LC-3B expression. Flow cytometry analysis revealed that SH caused an obvious cell-cycle arrest, accompanied by the decrease and increase in Cyclin D1 and p27 levels, respectively. Additionally, SH induced cell senescence with the induction of p21 in HCC cell lines. Mechanistically, SH treatment down-regulated the LIF and up-regulated p-AMPK. Moreover, PDX model in NSG mice was conducted to support the results in vitro. CONCLUSION: This study is the first to report the inhibitory function of SH in HCC, which may be due to the induction of autophagy and senescence. This study provides novel insights into the anti-HCC efficacy of SH and it might be a potential lead compound for further development of drug candidates for HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Prolina/análogos & derivadosRESUMO
Liver cancer is an extraordinarily heterogeneous malignancy with relatively high mortality and increasing incidence rate among the so far identified cancers. Improvements in liver cancer therapy have been made in the past decades, but therapeutics against liver cancer are still limited. Traditional Mongolian Medicine, formed and developed by the Mongolian people to maintain health in the medical practice of fighting against diseases, has been recognized as one of the key components of the world healthcare system. Traditional Mongolian Medicine has been used to treat various malignancies, including liver cancer, for a long time in Asia and its advantages have become more and more apparent. Herein, this review made a comprehensive summary of Traditional Mongolian Medicine, including the ideas in the liver cancer treatment, sources of medicines or prescriptions, traditional applications, modern pharmacological research, chemical structure and mechanisms of several monomer compounds isolated from Traditional Mongolian Medicine, with a view to finding promising drugs against liver cancer and expanding the clinical application of Traditional Mongolian Medicine in liver cancer therapy.
RESUMO
Malignant tumor has become one of the major diseases that seriously endangers human health. Numerous studies have demonstrated that tumor microenvironment (TME) is closely associated with patient prognosis. Tumor growth and progression are strongly dependent on its surrounding tumor microenvironment, because the optimal conditions originated from stromal elements are required for cancer cell proliferation, invasion, metastasis and drug resistance. The tumor microenvironment is an environment rich in immune/inflammatory cells and accompanied by a continuous, gradient of hypoxia and pH. Overcoming immunosuppressive environment and boosting anti-tumor immunity may be the key to the prevention and treatment of cancer. Most traditional Chinese medicine have been proved to have good anti-tumor activity, and they have the advantages of better therapeutic effect and few side effects in the treatment of malignant tumors. An increasing number of studies are giving evidence that alkaloids extracted from traditional Chinese medicine possess a significant anticancer efficiency via regulating a variety of tumor-related genes, pathways and other mechanisms. This paper reviews the anti-tumor effect of alkaloids targeting tumor microenvironment, and further reveals its anti-tumor mechanism through the effects of alkaloids on different components in tumor microenvironment.
RESUMO
This research aimed to evaluate the antihepatic fibrosis effect and explore the mechanism of Qiwei Qinggan Powder (QGS-7) in vivo and in vitro. Carbon tetrachloride (CCl4)-treated rats and hepatic stellate cells (HSCs) were used. QGS-7 treatment significantly improved the liver function of rats as indicated by decreased serum enzymatic activities of alanine aminotransferase, aspartate transaminase, and alkaline phosphatase. Meanwhile, the hydroxyproline of liver was significantly decreased. Histopathological results indicated that QGS-7 alleviated liver damage and reduced the formation of fibrosis septa. Moreover, QGS-7 significantly attenuated expressions of Alpha smooth muscle actin, Collagen I, Janus kinase 2 (JAK2), phosphorylation-JAK2, signal transducer and activator of transcription 3 (STAT3), phosphorylation-STAT3 in the rat hepatic fibrosis model. QGS-7 inhibited HSC proliferation and promoted it apoptosis. QGS-7 may affect hepatic fibrosis through JAK2/STAT3 signaling pathway so as to play an antihepatic fibrosis role.
Assuntos
Intoxicação por Tetracloreto de Carbono/tratamento farmacológico , Cirrose Hepática/tratamento farmacológico , Medicina Tradicional da Mongólia , Animais , Intoxicação por Tetracloreto de Carbono/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Hidroxiprolina/metabolismo , Janus Quinase 2/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Testes de Função Hepática , Mongólia , Fosforilação , Pós , Ratos , Fator de Transcrição STAT3/metabolismoRESUMO
Cancer is the principal cause of death and a dominant public health problem which seriously threatening human life. Among various ways to treat cancer, traditional Chinese medicine (TCM) and natural products have outstanding anti-cancer effects with their unique advantages of high efficiency and minimal side effects. Cell senescence is a physiological process of cell growth stagnation triggered by stress, which is an important line of defence against tumour development. In recent years, active ingredients of TCM and natural products, as an interesting research hotspot, can induce cell senescence to suppress the occurrence and development of tumours, by inhibiting telomerase activity, triggering DNA damage, inducing SASP, and activating or inactivating oncogenes. In this paper, the recent research progress on the main compounds derived from TCM and natural products that play anti-cancer roles by inducing cell senescence is systematically reviewed, aiming to provide a reference for the clinical treatment of pro-senescent cancer.
Assuntos
Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Senescência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Medicina Tradicional Chinesa , Neoplasias/patologia , Fenóis/química , Fenóis/farmacologia , Fenóis/uso terapêutico , Espécies Reativas de Oxigênio/metabolismoRESUMO
BACKGROUND: To explore the potential therapeutic effect of total flavonoids (TFs) extracted from Scabiosa comosa Fisch. ex Roem. et Schult on liver fibrosis in rat models and to identify the possible targets and pathways of TF in treating liver fibrosis by using a quantitative proteomics method. METHODS: Sixty Wistar rats were equally randomized into five groups: a blank control group, a model group, and high-, intermediate-, and low-dose TF treatment groups. Except for the blank control group, rats in the other four groups were intragastrically administered with CCL4 2 mL/kg to establish the liver fibrosis models. Furthermore, the high-, intermediate-, and low-dose TF groups were intragastrically given TF at a dose of 200, 100 and 50 mg/kg, respectively. After 10 weeks, the rats were sacrificed, and blood and liver samples were collected. Serum alanine transaminase (ALT), Aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels were measured, and hematoxylin and eosin (HE) staining and Masson's trichrome staining were used to observe the pathological changes in each group. The hydroxyproline content was also determined. Real-time polymerase chain reaction (PCR) and Western blotting (WB) were performed to detect the mRNA and protein expressions of α-smooth muscle actin (αSMA) and Collagen I. Mass spectrometry was performed for proteomic analysis. RESULTS: Compared with the blank control group, the model group had significantly higher ALT, AST, ALP, and hydroxyproline levels; also, HE and Masson staining showed fibrotic lesions and inflammatory cell infiltration in the model group. Compared with the model group, the high-, intermediate-, and lowdose TF groups had significantly decreased ALT, AST, and ALP levels (P<0.05), and a significantly lower hydroxyproline level (P<0.05), along with remarkably improved fibrotic lesions and inflammatory cell infiltration. Real-time PCR and WB showed that the model group had significantly higher expressions of αSMA and collagen I than those in the blank control group, whereas the TF groups had significantly lower expressions of αSMA and collagen I than those in the model group. A total of 5,014 proteins were detected by quantitative proteomics, among which 205 proteins were differentially expressed, 77 of which were upregulated and 128 of which were down-regulated. KEGG pathway analysis indicated that the peroxisome proliferator activated receptor (PPAR) and ECM-receptor interaction pathways were down-regulated in the TF groups compared with the model group. Among them, fatty-acid-binding protein (FABP) and von Willebrand factor (vWF) were the key proteins in the PPAR and extracellular matrix (ECM)-receptor interaction pathways. The proteomic results were validated by using WB, yielding consistent results. CONCLUSIONS: Our result demonstrated that the TF extract of Scabiosa comosa Fisch. ex Roem. et Schult has a good anti-liver fibrosis effect and may prevent liver fibrosis by reducing the content of α-SMA, Collagenâ in liver tissue. The anti-fibrosis mechanism of TF extract of Scabiosa comosa Fisch. ex Roem. et Schult may be the inhibition of key proteins FABP and vWF in PPAR, ECM RECEPTOR INTERACTION pathway.
Assuntos
Dipsacaceae/química , Relação Dose-Resposta a Droga , Flavonoides/farmacologia , Cirrose Hepática/tratamento farmacológico , Extratos Vegetais/farmacocinética , Substâncias Protetoras/farmacologia , Proteômica , Animais , Humanos , Masculino , Modelos Animais , Fitoterapia/métodos , Plantas Medicinais/química , Ratos , Ratos WistarRESUMO
Hepatocellular carcinoma (HCC) has become one of the major diseases that are threatening human health in the 21st century. Currently there are many approaches to treat liver cancer, but each has its own advantages and disadvantages. Among various methods of treating liver cancer, natural medicine treatment has achieved promising results because of their superiorities of high efficiency and availability, as well as low side effects. Alkaloids, as a class of natural ingredients derived from traditional Chinese medicines, have previously been shown to exert prominent anti-hepatocarcinogenic effects, through various mechanisms including inhibition of proliferation, metastasis and angiogenesis, changing cell morphology, promoting apoptosis and autophagy, triggering cell cycle arrest, regulating various cancer-related genes as well as pathways and so on. As a consequence, alkaloids suppress the development and progression of liver cancer. In this study, the mechanisms of representative alkaloids against hepatocarcinoma in each class are described systematically according to the structure classification, which mainly divides alkaloids into piperidine alkaloids, isoquinoline alkaloids, indole alkaloids, terpenoids alkaloids, steroidal alkaloids and other alkaloids. Besides using them alone, synergistic effects created together with other chemotherapy drugs and some special preparation methods also have been demonstrated. In this review, we have summarized the potential roles of several common alkaloids in the prevention and treatment of HCC, by revising the preclinical studies, highlighting the potential applications of alkaloids when they function as a therapeutic choice for HCC treatment, and integrating them into clinical practices.
Assuntos
Alcaloides/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Medicina Tradicional Chinesa , Alcaloides/química , Alcaloides/farmacologia , Animais , HumanosRESUMO
Scabiosa comosa inflorescence is a traditional Mongolian medicine in the treatment of liver diseases. In the study, we investigated the anti-fibrotic efficacy of flavonoid-rich Scabiosa comosa inflorescence extract (TF-SC) in a rat model of CCl4-induced hepatic fibrosis and explored its underlying mechanism in vitro and in vivo. Rats (Wistar, Male, weight 200-250â¯g) were injected intraperitoneally with CCl4 (1:1v/v in peanut oil, 2â¯mL/kg body weight) to induce liver fibrosis, followed by treatment with TF-SC or vehicle. In addition, transforming growth factor-ß1 (TGF-ß1)-activated hepatic stellate cells (HSCs) were used for measuring Smad3 phosphorylation. We found decrease in liver function and liver fibrosis markers in serums. Also, TF-SC decreased hydroxyproline content and collagen deposition in liver tissues. TF-SC also decreased the expression of α-SMA, collagen I and fibronectin in CCl4-induced hepatic fibrosis rats. Mechanistically, TF-SC attenuated liver fibrosis by selectively inhibiting Smad3 phosphorylation. In TGF-ß1-stimulated HSCs, TF-SC blocked the interaction between Smad3 and TGF-ß type I receptor (TßRI), suppressed subsequent phosphorylation and nuclear translocation of Smad3, and down-regulated the transcription of fibrotic genes. In conclusion, the study demonstrated that TF-SC was an effective therapeutic agent for treatment of hepatic fibrosis, and provided a molecular basis through which TF-SC exerts its anti-fibrotic effects.
Assuntos
Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Flavonoides/farmacologia , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Animais , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citoproteção , Dipsacaceae/química , Relação Dose-Resposta a Droga , Flavonoides/isolamento & purificação , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/sangue , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/patologia , Masculino , Fosforilação , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Substâncias Protetoras/isolamento & purificação , Ratos Wistar , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
OBJECTIVE: To develop a green and rapid method for extraction of lobetyolin from C. pilosula. METHOD: Extraction of lobetyolin from C. pilosula with supercritical carbon dioxide in the presence of ethanol was studied. The effects of pressure, temperature, volume of cosolvent and extraction time on efficiency and their interactive relationships were discussed, based on central composite design and response surface methodology (RSM). RESULT: The key effect factor was volume of cosolvent. The extraction yield of lobetyolin was 0.078 6 mg x g(-1) when C. pilosula (40-60 mesh) was extracted at 30 MPa, 60 degrees C and 2 L x min(-1) (as CO2 in normal pressure and temperature) for 100 minutes with supercritical CO2 and 1 mL x min(-1) ethanol as dynamic cosolvent. CONCLUSION: This result is better than that obtained from traditional method. Therefore, the optimized process is valuable for extraction of lobetyolin from C. pilosula.