Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Radiol ; 33(2): 1132-1142, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35951045

RESUMO

OBJECTIVES: To explore whether the combined analysis of motor and bulbar region of M1 on susceptibility-weighted imaging (SWI) can be a valid biomarker for amyotrophic lateral sclerosis (ALS). METHODS: Thirty-two non-demented ALS patients and 35 age- and gender-matched healthy controls (HC) were retrospectively recruited. SWI and 3D-T1-MPRAGE images were obtained from all individuals using a 3.0-T MRI scan. The bilateral posterior band of M1 was manually delineated by three neuroradiologists on phase images and subdivided into the motor and bulbar regions. We compared the phase values in two groups and performed a stratification analysis (ALSFRS-R score, duration, disease progression rate, and onset). Receiver operating characteristic (ROC) curves were also constructed. RESULTS: ALS group showed significantly increased phase values in M1 and the two subregions than the HC group, on the all and elderly level (p < 0.001, respectively). On all-age level comparison, negative correlations were found between phase values of M1 and clinical score and duration (p < 0.05, respectively). Similar associations were found in the motor region (p < 0.05, respectively). On both the total (p < 0.01) and elderly (p < 0.05) levels, there were positive relationships between disease progression rate and M1 phase values. In comparing ROC curves, the entire M1 showed the best diagnostic performance. CONCLUSIONS: Combining motor and bulbar analyses as an integral M1 region on SWI can improve ALS diagnosis performance, especially in the elderly. The phase value could be a valuable biomarker for ALS evaluation. KEY POINTS: • Integrated analysis of the motor and bulbar as an entire M1 region on SWI can improve the diagnosis performance in ALS. • Quantitative analysis of iron deposition by SWI measurement helps the clinical evaluation, especially for the elderly patients. • Phase value, when combined with the disease progression rate, could be a valuable biomarker for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Córtex Motor , Humanos , Idoso , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Ferro , Estudos Retrospectivos , Córtex Motor/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Progressão da Doença
2.
Food Chem Toxicol ; 156: 112527, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34464636

RESUMO

Ferric citrate has been used to treat hyperphosphatemia, a prevalent symptom in patients with chronic kidney disease while ferric ammonium citrate (FAC), a more dissolvable format, is widely used as food additive. However, excess iron is associated with osteoporosis. Dietary soybean products have been shown to prevent the progression of osteoporosis. In this study, a group of peptides, referred as P3, was identified from the enzymolysis of soybean protein isolates, and its biological functions were investigated. The results showed that MC3T3-E1 cell cycle progression from G0/G1 to S phase was accelerated by P3 treatment. MC3T3-E1 cell proliferation was enhanced by P3 via ERK1/2 activation. Importantly, P3 treatment abolished the antiproliferative effect of FAC on MC3T3-E1 cell. In addition, P3 treatment increased the expression of ALP, COL-1, OCN, consequently promoting the differentiation and mineralization of MC3T3-E1 cells via activation of p38 MAPK pathway. Consequently, P3 treatment was able to reverse the inhibitory effect of FAC on osteoblasts differentiation and mineralization. Our findings suggest P3, as a dietary supplement, has a potential therapeutic function to attenuate the adverse effects of FAC on bone metabolism and to prevent osteoporosis progression.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Compostos Férricos/toxicidade , Osteoblastos/efeitos dos fármacos , Compostos de Amônio Quaternário/toxicidade , Proteínas de Soja/farmacologia , Células 3T3 , Animais , Sistema de Sinalização das MAP Quinases , Camundongos , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA