Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Bioact Mater ; 30: 46-61, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37521273

RESUMO

Artificial bone grafting materials such as collagen are gaining interest due to the ease of production and implantation. However, collagen must be supplemented with additional coating materials for improved osteointegration. Here, we report room-temperature atomic layer deposition (ALD) of MgO, a novel method to coat collagen membranes with MgO. Characterization techniques such as X-ray photoelectron spectroscopy, Raman spectroscopy, and electron beam dispersion mapping confirm the chemical nature of the film. Scanning electron and atomic force microscopies show the surface topography and morphology of the collagen fibers were not altered during the ALD of MgO. Slow release of magnesium ions promotes bone growth, and we show the deposited MgO film leaches trace amounts of Mg when incubated in phosphate-buffered saline at 37 °C. The coated collagen membrane had a superhydrophilic surface immediately after the deposition of MgO. The film was not toxic to human cells and demonstrated antibacterial properties against bacterial biofilms. Furthermore, in vivo studies performed on calvaria rats showed MgO-coated membranes (200 and 500 ALD) elicit a higher inflammatory response, leading to an increase in angiogenesis and a greater bone formation, mainly for Col-MgO500, compared to uncoated collagen. Based on the characterization of the MgO film and in vitro and in vivo data, the MgO-coated collagen membranes are excellent candidates for guided bone regeneration.

2.
Adv Colloid Interface Sci ; 314: 102860, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36931199

RESUMO

Polypyrrole (PPy) is one of the most studied conductive polymers due to its electrical conductivity and biological properties, which drive the possibility of numerous applications in the biomedical area. The physical-chemical features of PPy allow the manufacture of biocompatible devices, enhancing cell adhesion and proliferation. Furthermore, owing to the electrostatic interactions between the negatively charged bacterial cell wall and the positive charges in the polymer structure, PPy films can perform an effective antimicrobial activity. PPy is also frequently associated with biocompatible agents and antimicrobial compounds to improve the biological response. Thus, this comprehensive review appraised the available evidence regarding the PPy-based films deposited on metallic implanted devices for biomedical applications. We focus on understanding key concepts that could influence PPy attributes regarding antimicrobial effect and cell behavior under in vitro and in vivo settings. Furthermore, we unravel the several agents incorporated into the PPy film and strategies to improve its functionality. Our findings suggest that incorporating other elements into the PPy films, such as antimicrobial agents, biomolecules, and other biocompatible polymers, may improve the biological responses. Overall, the basic properties of PPy, when combined with other composites, electrostimulation techniques, or surface treatment methods, offer great potential in biocompatibility and/or antimicrobial activities. However, challenges in synthesis standardization and potential limitations such as low adhesion and mechanical strength of the film must be overcome to improve and broaden the application of PPy film in biomedical devices.


Assuntos
Polímeros , Pirróis , Polímeros/farmacologia , Polímeros/química , Pirróis/farmacologia , Pirróis/química , Adesão Celular , Condutividade Elétrica
3.
J Photochem Photobiol B ; 217: 112167, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33667733

RESUMO

This in vivo study investigated whether the bioactivity of anodizing coating, produced by plasma electrolytic oxidation (PEO), on mini-plate in femur fracture could be improved with the association of photobiomodulation (PBM) therapy. From the 20 ovariectomized Wistar female rats, 8 were used for model characterization, and the remaining 12 were divided into four groups according to the use of PBM therapy by diode laser (808 nm; power: 100 mW; energy: 6.0 J; energy density: 212 J/cm2; power density: 3.5 W/cm2) and the type of mini-plate surface (commercially pure titanium mini-plate -cpTi- and PEO-treated mini-plate) as follow: cpTi; PEO; cpTi/PBM; and PEO/PBM. After 60 days of surgery, fracture healing underwent microstructural, bone turnover, histometric, and histologic adjacent muscle analysis. Animals of groups with PEO and PBM showed greater fracture healing than cpTi control group under histometric and microstructural analysis (P < 0.05); however, bone turnover was just improved in PBM's groups (P < 0.05). there was no difference between cpTi and PEO without PBM (P > 0.05). Adjacent muscle analysis showed no metallic particles or muscle alterations in all groups. PEO and PBM are effective strategies for bone repair in fractures, however their association does not provide additional advantages.


Assuntos
Fraturas do Fêmur/radioterapia , Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade , Animais , Modelos Animais de Doenças , Estrogênios/análise , Feminino , Fraturas do Fêmur/patologia , Fêmur/diagnóstico por imagem , Fêmur/patologia , Consolidação da Fratura/efeitos da radiação , Ovariectomia , Ratos , Ratos Wistar , Microtomografia por Raio-X
4.
Dent Mater ; 34(7): e182-e195, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29678329

RESUMO

OBJECTIVE: Titanium dioxide (TiO2) incorporation in biomaterials is a promising technology due to its photocatalytic and antibacterial activities. However, the antibacterial potential of different TiO2 crystalline structures on a multispecies oral biofilm remains unknown. We hypothesized that the different crystalline TiO2 phases present different photocatalytic and antibacterial activities. METHODS: Three crystalline TiO2 films were deposited by magnetron sputtering on commercially pure titanium (cpTi), in order to obtain four groups: (1) machined cpTi (control); (2) A-TiO2 (anatase); (3) M-TiO2 (mixture of anatase and rutile); (4) R-TiO2 (rutile). The morphology, crystalline phase, chemical composition, hardness, elastic modulus and surface free energy of the surfaces were evaluated. The photocatalytic potential was assessed by methylene blue degradation assay. The antibacterial activity was evaluated on relevant oral bacteria, by using a multispecies biofilm (Streptococcus sanguinis, Actinomyces naeslundii and Fusobacterium nucleatum) formed on the treated titanium surfaces (16.5h) followed by UV-A light exposure (1h) to generate reactive oxygen species production. RESULTS: All TiO2 films presented around 300nm thickness and improved the hardness and elastic modulus of cpTi surfaces (p<0.05). A-TiO2 and M-TiO2 films presented superior photocatalytic activity than R-TiO2 (p<0.05). M-TiO2 revealed the greatest antibacterial activity followed by A-TiO2 (≈99.9% and 99% of bacterial reduction, respectively) (p<0.001 vs. control). R-TiO2 had no antibacterial activity (p>0.05 vs. control). SIGNIFICANCE: This study brings new insights on the development of extra oral protocols for the photocatalytic activity of TiO2 in oral biofilm-associated disease. Anatase and mixture-TiO2 showed antibacterial activity on this oral bacterial biofilm, being promising surface coatings for dental implant components.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Titânio/farmacologia , Actinomyces , Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Módulo de Elasticidade , Fusobacterium nucleatum , Dureza , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Processos Fotoquímicos , Espectrometria por Raios X , Streptococcus sanguis , Propriedades de Superfície , Titânio/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA