Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R317-R328, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622081

RESUMO

Independent supplementation with nitrate (NIT) and resveratrol (RSV) enriches various aspects of mitochondrial biology in key metabolic tissues. Although RSV is known to activate Sirt1 and initiate mitochondrial biogenesis, the metabolic benefits elicited by dietary nitrate appear to be dependent on 5'-adenosine monophosphate-activated protein kinase (AMPK)-mediated signaling events, a process also linked to the activation of Sirt1. Although the benefits of individual supplementation with these compounds have been characterized, it is unknown if co-supplementation may produce superior metabolic adaptations. Thus, we aimed to determine if treatment with combined +NIT and +RSV (+RN) could additively alter metabolic adaptations in the presence of a high-fat diet (HFD). Both +RSV and +NIT improved glucose tolerance compared with HFD (P < 0.05); however, this response was attenuated following combined +RN supplementation. Within skeletal muscle, all supplements increased mitochondrial ADP sensitivity compared with HFD (P < 0.05), without altering mitochondrial content. Although +RSV and +NIT decreased hepatic lipid deposition compared with HFD (P < 0.05), this effect was abolished with +RN, which aligned with significant reductions in Sirt1 protein content (P < 0.05) after combined treatment, in the absence of changes to mitochondrial content or function. Within epididymal white adipose tissue (eWAT), all supplements reduced crown-like structure accumulation compared with HFD (P < 0.0001) and mitochondrial reactive oxygen species (ROS) emission (P < 0.05), alongside reduced adipocyte cross-sectional area (CSA) (P < 0.05), with the greatest effect observed after +RN treatment (P = 0.0001). Although the present data suggest additive changes in adipose tissue metabolism after +RN treatment, concomitant impairments in hepatic lipid homeostasis appear to prevent improvements in whole body glucose homeostasis observed with independent treatment, which may be Sirt1 dependent.


Assuntos
Nitratos , Sirtuína 1 , Camundongos , Animais , Masculino , Resveratrol/farmacologia , Nitratos/farmacologia , Sirtuína 1/metabolismo , Suplementos Nutricionais , Dieta Hiperlipídica , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Lipídeos
2.
Appl Physiol Nutr Metab ; 45(9): 1049-1053, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32379978

RESUMO

Dietary nitrate has been shown to increase cytosolic calcium concentrations within the heart, which would necessitate greater calcium sequestration for relaxation. In the present study we demonstrate that while nitrate supplementation reduced blood pressure, calcium-handling protein content, sarco(endo)plasmic reticulum Ca-ATPase 2a (SERCA) enzymatic properties, and left ventricular function were not altered. In addition, nitrite did not alter in vitro SERCA activity. Combined, these data suggest that in healthy rats, dietary nitrate does not increase left ventricle SERCA-related calcium-handling properties. Novelty Dietary nitrate decreases blood pressure but does not alter left ventricular calcium-handling protein content or SERCA activity in healthy rats.


Assuntos
Nitratos/administração & dosagem , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Função Ventricular , Animais , Pressão Sanguínea , Cálcio , Dieta , Ventrículos do Coração , Masculino , Ratos , Ratos Sprague-Dawley
3.
J Physiol ; 595(13): 4351-4364, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28345766

RESUMO

KEY POINTS: α-linolenic acid (ALA) and exercise training both attenuate hyperlipidaemia-related cardiovascular derangements, however, there is a paucity of information pertaining to their mechanisms of action when combined. We investigated both the independent and combined effects of exercise training and ALA consumption in obese Zucker rats, aiming to determine the potential for additive improvements in cardiovascular function. ALA and exercise training independently improved cardiac output, end-diastolic volume, left ventricular fibrosis and mean blood pressure following a 4 week intervention. Combining ALA and endurance exercise yielded greater improvements in these parameters, independent of changes in markers of oxidative stress or endogenous anti-oxidants. We postulate that divergent mechanisms of action may explain these changes: ALA increases peripheral vasodilation, and exercise training stimulates angiogenesis. ABSTRACT: Although α-linolenic acid (ALA) and endurance exercise training independently attenuate hyperlipidaemia-related cardiovascular derangements, there is a paucity of information pertaining to their mechanisms of action and efficacy when combined as a preventative therapeutic approach. Therefore, we used obese Zucker rats to investigate the independent and combined effects of these interventions on cardiovascular disease. Specifically, animals were randomly assigned to one of the following groups: control diet-sedentary, ALA supplemented-sedentary, control diet-exercise trained or ALA supplemented-exercise trained. Following a 4 week intervention, although the independent and combined effects of ALA and exercise reduced (P < 0.05) the serum free/esterified cholesterol ratio, only the ALA supplemented-exercise trained animals displayed a reduction in the content of both serum free and esterified cholesterol. Moreover, although ALA and endurance training individually increased cardiac output, stroke volume and end-diastolic volume, as well as reduced left ventricle fibrosis, mean blood pressure and total peripheral resistance, these responses were all greater following the combined intervention (ALA supplemented-exercise trained). These effects occurred independent of changes in oxidative phosphorylation proteins, markers of oxidative stress or endogenous anti-oxidant capacity. We propose that the beneficial effects of a combined intervention occur as a result of divergent mechanisms of action elicited by ALA and endurance exercise because only exercise training increased the capillary content in the left ventricle and skeletal muscle, and tended to decrease protein carbonylation in the left ventricle (P = 0.06). Taken together, our data indicate that combining ALA and endurance exercise provides additional improvements in cardiovascular disease risk reduction compared to singular interventions in the obese Zucker rat.


Assuntos
Pressão Sanguínea , Doenças Cardiovasculares/tratamento farmacológico , Diástole , Terapia por Exercício/métodos , Obesidade/complicações , Condicionamento Físico Animal , Ácido alfa-Linolênico/uso terapêutico , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/terapia , Colesterol/sangue , Frequência Cardíaca , Masculino , Obesidade/fisiopatologia , Ratos , Ratos Zucker , Ácido alfa-Linolênico/administração & dosagem
4.
Am J Physiol Regul Integr Comp Physiol ; 311(6): R1234-R1242, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27806984

RESUMO

The cellular processes influenced by consuming polyunsaturated fatty acids remains poorly defined. Within skeletal muscle, a rate-limiting step in fatty acid oxidation is the movement of lipids across the sarcolemmal membrane, and therefore, we aimed to determine the effects of consuming flaxseed oil high in α-linolenic acid (ALA), on plasma membrane lipid composition and the capacity to transport palmitate. Rats fed a diet supplemented with ALA (10%) displayed marked increases in omega-3 polyunsaturated fatty acids (PUFAs) within whole muscle and sarcolemmal membranes (approximately five-fold), at the apparent expense of arachidonic acid (-50%). These changes coincided with increased sarcolemmal palmitate transport rates (+20%), plasma membrane fatty acid translocase (FAT/CD36; +20%) abundance, skeletal muscle triacylglycerol content (approximately twofold), and rates of whole body fat oxidation (~50%). The redistribution of FAT/CD36 to the plasma membrane could not be explained by increased phosphorylation of signaling pathways implicated in regulating FAT/CD36 trafficking events (i.e., phosphorylation of ERK1/2, CaMKII, AMPK, and Akt), suggesting the increased n-3 PUFA composition of the plasma membrane influenced FAT/CD36 accumulation. Altogether, the present data provide evidence that a diet supplemented with ALA increases the transport of lipids into resting skeletal muscle in conjunction with increased sarcolemmal n-3 PUFA and FAT/CD36 contents.


Assuntos
Antígenos CD36/metabolismo , Suplementos Nutricionais , Metabolismo dos Lipídeos/fisiologia , Palmitatos/metabolismo , Sarcolema/metabolismo , Ácido alfa-Linolênico/administração & dosagem , Administração Oral , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/fisiologia , Óleo de Semente do Linho/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Taxa de Depuração Metabólica , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-Dawley , Sarcolema/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA