Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Struct Funct ; 223(5): 2143-2156, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29380121

RESUMO

Kisspeptin (KP) synthesizing neurons of the hypothalamic infundibular region are critically involved in the central regulation of fertility; these cells regulate pulsatile gonadotropin-releasing hormone (GnRH) secretion and mediate sex steroid feedback signals to GnRH neurons. Fine structural analysis of the human KP system is complicated by the use of post mortem tissues. To gain better insight into the neuroanatomy of the somato-dendritic cellular compartment, we introduced the diolistic labeling of immunohistochemically identified KP neurons using a gene gun loaded with the lipophilic dye, DiI. Confocal microscopic studies of primary dendrites in 100-µm-thick tissue sections established that 79.3% of KP cells were bipolar, 14.1% were tripolar, and 6.6% were unipolar. Primary dendrites branched sparsely, contained numerous appendages (9.1 ± 1.1 spines/100 µm dendrite), and received rich innervation from GABAergic, glutamatergic, and KP-containing terminals. KP neuron synaptology was analyzed with immunoelectron microscopy on perfusion-fixed specimens. KP axons established frequent contacts and classical synapses on unlabeled, and on KP-immunoreactive somata, dendrites, and spines. Synapses were asymmetric and the presynaptic structures contained round and regular synaptic vesicles, in addition to dense-core granules. Although immunofluorescent studies failed to detect vesicular glutamate transporter isoforms in KP axons, ultrastructural characteristics of synaptic terminals suggested use of glutamatergic, in addition to peptidergic, neurotransmission. In summary, immunofluorescent and DiI labeling of KP neurons in thick hypothalamic sections and immunoelectron microscopic studies of KP-immunoreactive neurons in brains perfusion-fixed shortly post mortem allowed us to identify previously unexplored fine structural features of KP neurons in the mediobasal hypothalamus of humans.


Assuntos
Hipotálamo/citologia , Kisspeptinas/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autopsia , Axônios/metabolismo , Axônios/ultraestrutura , Carbocianinas/metabolismo , Corpo Celular/ultraestrutura , Dendritos/metabolismo , Dendritos/ultraestrutura , Ácido Glutâmico/metabolismo , Humanos , Imageamento Tridimensional , Kisspeptinas/ultraestrutura , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Microscopia Confocal , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Rede Nervosa/metabolismo , Rede Nervosa/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/ultraestrutura , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/ultraestrutura , Ácido gama-Aminobutírico/metabolismo
2.
PLoS One ; 7(6): e37860, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719854

RESUMO

Hypothalamic neurosecretory systems are fundamental regulatory circuits influenced by thyroid hormone. Monocarboxylate-transporter-8 (MCT8)-mediated uptake of thyroid hormone followed by type 3 deiodinase (D3)-catalyzed inactivation represent limiting regulatory factors of neuronal T3 availability. In the present study we addressed the localization and subcellular distribution of D3 and MCT8 in neurosecretory neurons and addressed D3 function in their axons. Intense D3-immunoreactivity was observed in axon varicosities in the external zone of the rat median eminence and the neurohaemal zone of the human infundibulum containing axon terminals of hypophysiotropic parvocellular neurons. Immuno-electronmicroscopy localized D3 to dense-core vesicles in hypophysiotropic axon varicosities. N-STORM-superresolution-microscopy detected the active center containing C-terminus of D3 at the outer surface of these organelles. Double-labeling immunofluorescent confocal microscopy revealed that D3 is present in the majority of GnRH, CRH and GHRH axons but only in a minority of TRH axons, while absent from somatostatin-containing neurons. Bimolecular-Fluorescence-Complementation identified D3 homodimers, a prerequisite for D3 activity, in processes of GT1-7 cells. Furthermore, T3-inducible D3 catalytic activity was detected in the rat median eminence. Triple-labeling immunofluorescence and immuno-electronmicroscopy revealed the presence of MCT8 on the surface of the vast majority of all types of hypophysiotropic terminals. The presence of MCT8 was also demonstrated on the axon terminals in the neurohaemal zone of the human infundibulum. The unexpected role of hypophysiotropic axons in fine-tuned regulation of T3 availability in these cells via MCT8-mediated transport and D3-catalyzed inactivation may represent a novel regulatory core mechanism for metabolism, growth, stress and reproduction in rodents and humans.


Assuntos
Hipotálamo/fisiologia , Neurônios/fisiologia , Hormônios Tireóideos/metabolismo , Animais , Axônios , Imunofluorescência , Humanos , Hipotálamo/citologia , Hipotálamo/metabolismo , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA