Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 266: 128974, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33228988

RESUMO

Honeybees are exposed to a wide range of pesticides for long periods via contaminated water, pollen and nectar. Some of those pesticides might constitute health hazards in a time- and dose-dependent manner. Time-dependent toxicity profiles for many applied pesticides are lacking, despite the fact that such profiles are crucial for toxicological evaluations. Therefore, we sought to determine the time-dependent toxicities of pesticides/pesticide metabolites frequently found in Israeli beehives, namely, amitraz metabolites, N'-(2,4-dimethylphenyl)-N-methylformamidine (DMPF) and N-(2,4-dimethylphenyl)-formamide (DMF), coumaphos, imidacloprid, thiacloprid, acetamiprid and dimethoate (toxic reference). By applying accepted methodological approaches such as the modified Haber's rule (product of concentration and exposure duration leads to a constant effect) and comparisons between cumulative doses at different time points, we determined the time-dependent toxicities of these pesticides. We also studied the mixture toxicities of frequently occurring pesticide combinations and estimated their potential contributions to the overall toxicities of neonicotinoids. Thiacloprid was the only pesticide that complied with Haber's rule. DMPF, dimethoate and imidacloprid exhibited time-diminished -toxicities. In contrast, DMF and acetamiprid exhibited time-reinforced toxicities. Neither the binary mixtures nor the tertiary mixtures of DMF, DMPF and coumaphos at 10 times their environmentally relevant concentrations potentiated the neonicotinoids' toxicities. DMPF and imidacloprid were found to present the greatest hazard to honeybees, based on their 50% lethal cumulative dose and 50% lethal time. Amitraz's instability, its low detection frequency and high toxicity profile of its metabolite, DMPF, lead us to the conclusion that DMPF constitutes the actual toxic entity responsible for amitraz's toxic effect.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas , Cumafos , Dimetoato/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos , Praguicidas/toxicidade , Pólen
2.
J Sci Food Agric ; 97(4): 1073-1083, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27701742

RESUMO

The Israeli feed safety legislation, which came to prominence in the early 1970s, has undergone a major change from simple feed safety and quality regulations to a more holistic concept of control of feed safety and quality throughout the whole feed production chain, from farm to the end user table. In February 2014, a new law was approved by the Israeli parliament, namely the Control of Animal Feed Law, which is expected to enter into effect in 2017. The law is intended to regulate the production and marketing of animal feed, guaranteeing the safety and quality of animal products throughout the production chain. The responsibility on the implementation of the new feed law was moved from the Plant Protection Inspection Service to the Veterinary Services and Animal Health. In preparation for the law's implementation, we have characterized the various sources and production lines of feed for farm and domestic animals in Israel and assessed the current feed safety challenges in terms of potential hazards or undesirable substances. Moreover, the basic requirements for feed safety laboratories, which are mandatory for analyzing and testing for potential contaminants, are summarized for each of the contaminants discussed. © 2016 Society of Chemical Industry.


Assuntos
Ração Animal , Criação de Animais Domésticos/legislação & jurisprudência , Animais Domésticos , Contaminação de Alimentos/legislação & jurisprudência , Abastecimento de Alimentos/legislação & jurisprudência , Saúde Pública/legislação & jurisprudência , Segurança , Animais , Dieta , Humanos , Israel
3.
Artigo em Inglês | MEDLINE | ID: mdl-26365752

RESUMO

Dehydro pyrrolizidine alkaloids (dehydro PAs) are carcinogenic phytotoxins prevalent in the Boraginaceae, Asteraceae and Fabaceae families. Dehydro PAs enter the food and feed chain by co-harvesting of crops intended for human and animal consumption as well as by carry-over into animal-based products such as milk, eggs and honey. Recently the occurrence of dehydro PAs in teas and herbal teas has gained increasing attention from the EU, due to the high levels of dehydro PAs found in commercially available teas and herbal teas in Germany and Switzerland. Furthermore, several tropane alkaloids (TAs, e.g. scopolamine and hyoscyamine) intoxications due to the consumption of contaminated herbal teas were reported in the literature. The aim of the present study was to determine the dehydro PAs and TAs levels in 70 pre-packed teabags of herbal and non-herbal tea types sold in supermarkets in Israel. Chamomile, peppermint and rooibos teas contained high dehydro PAs levels in almost all samples analysed. Lower amounts were detected in black and green teas, while no dehydro PAs were found in fennel and melissa herbal teas. Total dehydro PAs concentrations in chamomile, peppermint and rooibos teas ranged from 20 to 1729 µg/kg. Except for black tea containing only mono-ester retrorsine-type dehydro PAs, all other teas and herbal teas showed mixed patterns of dehydro PA ester types, indicating a contamination by various weed species during harvesting and/or production. The TA levels per teabag were below the recommended acute reference dose; however, the positive findings of TAs in all peppermint tea samples warrant a more extensive survey. The partially high levels of dehydro PAs found in teas and herbal teas present an urgent warning letter to the regulatory authorities to perform routine quality control analysis and implement maximum residual levels for dehydro PAs.


Assuntos
Aspalathus/química , Camomila/química , Poluentes Ambientais/isolamento & purificação , Mentha piperita/química , Alcaloides de Pirrolizidina/isolamento & purificação , Chás de Ervas/análise , Tropanos/isolamento & purificação , Bebidas/análise , Cromatografia Líquida , Contaminação de Alimentos/análise , Humanos , Israel , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Chá/química
4.
J Agric Food Chem ; 63(5): 1664-72, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25591008

RESUMO

Pyrrolizidine alkaloids (PAs) are carcinogenic and genotoxic phytochemicals found exclusively in angiosperms. The ingestion of PA-containing plants often results in acute and chronic toxicities in man and livestock, targeting mainly the liver. During February 2014, a herd of 15-18-month-old mixed-breed beef cattle (n = 73) from the Galilee region in Israel was accidently fed hay contaminated with 12% Heliotropium europaeum (average total PA intake was 33 mg PA/kg body weight/d). After 42 d of feed ingestion, sudden death occurred over a time period of 63 d with a mortality rate of 33%. Necropsy and histopathological examination revealed fibrotic livers and moderate ascites, as well as various degrees of hyperplasia and fibrosis of bile duct epithelial cells. Elevated γ-glutamyl-transferase and alkaline phosphatase levels were indicative of severe liver damage. Comprehensive PA profile determination of the contaminated hay and of native H. europaeum by LC-MS/MS revealed the presence of 30 PAs and PA-N-oxides, including several newly reported PAs and PA-N-oxides of the rinderine and heliosupine class. Heliotrine- and lasiocarpine-type PAs constituted 80% and 18% of the total PAs, respectively, with the N-oxides being the most abundant form (92%). The PA profile of the contaminated hay showed very strong resemblance to that of H. europaeum.


Assuntos
Ração Animal/toxicidade , Doenças dos Bovinos/metabolismo , Doenças Transmitidas por Alimentos/veterinária , Heliotropium/toxicidade , Extratos Vegetais/toxicidade , Alcaloides de Pirrolizidina/toxicidade , Ração Animal/análise , Animais , Bovinos , Doenças dos Bovinos/etiologia , Feminino , Doenças Transmitidas por Alimentos/etiologia , Doenças Transmitidas por Alimentos/metabolismo , Heliotropium/química , Heliotropium/metabolismo , Masculino , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA