Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276623

RESUMO

Among breast cancer subtypes, triple-negative breast cancer stands out as the most aggressive, with patients facing a 40% mortality rate within the initial five years. The limited treatment options and unfavourable prognosis for triple-negative patients necessitate the development of novel therapeutic strategies. Photodynamic therapy (PDT) is an alternative treatment that can effectively target triple-negative neoplastic cells such as MDA-MB-231. In this in vitro study, we conducted a comparative analysis of the PDT killing rate of unbound Rose Bengal (RB) in solution versus RB-encapsulated chitosan nanoparticles to determine the most effective approach for inducing cytotoxicity at low laser powers (90 mW, 50 mW, 25 mW and 10 mW) and RB concentrations (50 µg/mL, 25 µg/mL, 10 µg/mL and 5 µg/mL). Intracellular singlet oxygen production and cell uptake were also determined for both treatment modalities. Dark toxicity was also assessed for normal breast cells. Despite the low laser power and concentration of nanoparticles (10 mW and 5 µg/mL), MDA-MB-231 cells experienced a substantial reduction in viability (8 ± 1%) compared to those treated with RB solution (38 ± 10%). RB nanoparticles demonstrated higher singlet oxygen production and greater uptake by cancer cells than RB solutions. Moreover, RB nanoparticles display strong cytocompatibility with normal breast cells (MCF-10A). The low activation threshold may be a crucial advantage for specifically targeting malignant cells in deep tissues.


Assuntos
Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Rosa Bengala/farmacologia , Rosa Bengala/uso terapêutico , Oxigênio Singlete , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
2.
Molecules ; 28(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836744

RESUMO

Cancer, a prominent cause of death, presents treatment challenges, including high dosage requirements, drug resistance, poor tumour penetration and systemic toxicity in traditional chemotherapy. Photodynamic therapy, using photosensitizers like rose bengal (RB) with a green laser, shows promise against breast cancer cells in vitro. However, the hydrophilic RB struggles to efficiently penetrate the tumour site due to the unique clinical microenvironment, aggregating around rather than entering cancer cells. In this study, we have synthesized and characterized RB-encapsulated chitosan nanoparticles with a peak particle size of ~200 nm. These nanoparticles are readily internalized by cells and, in combination with a green laser (λ = 532 nm) killed 94-98% of cultured human breast cancer cells (MCF-7) and prostate cancer cells (PC3) at a low dosage (25 µg/mL RB-nanoparticles, fluence ~126 J/cm2, and irradiance ~0.21 W/cm2). Furthermore, these nanoparticles are not toxic to cultured human normal breast cells (MCF10A), which opens an avenue for translational applications.


Assuntos
Neoplasias da Mama , Nanopartículas , Fotoquimioterapia , Neoplasias da Próstata , Masculino , Humanos , Rosa Bengala/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Microambiente Tumoral
3.
Lasers Surg Med ; 54(5): 758-766, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35195285

RESUMO

BACKGROUND AND OBJECTIVES: Biocompatible nanoparticles have been increasingly used in a variety of medical applications, including photodynamic therapy. Although the impact of synthesis parameters and purification methods is reported in previous studies, it is still challenging to produce a reliable protocol for the fabrication, purification, and characterization of nanoparticles in the 200-300 nm range that are highly monodisperse for biomedical applications. STUDY DESIGN/MATERIALS AND METHODS: We investigated the synthesis of chitosan nanoparticles in the 200-300 nm range by evaluating the chitosan to sodium tripolyphosphate (TPP) mass ratio and acetic acid concentration of the chitosan solution. Chitosan nanoparticles were also crosslinked to rose bengal and incubated with human breast cancer cells (MCF-7) to test photodynamic activity using a green laser (λ = 532 nm, power = 90 mW). RESULTS: We established a simple protocol to fabricate and purify biocompatible nanoparticles with the most frequent size occurring between 200 and 300 nm. This was achieved using a chitosan to TPP mass ratio of 5:1 in 1% v/v acetic acid at a pH of 5.5. The protocol involved the formation of nanoparticle coffee rings that showed the particle shape to be spherical in the first approximation. Photodynamic treatment with rose bengal-nanoparticles killed ~98% of cancer cells. CONCLUSION: A simple protocol was established to prepare and purify spherical and biocompatible chitosan nanoparticles with a peak size of ~200 nm. These have remarkable antitumor activity when coupled with photodynamic treatment.


Assuntos
Quitosana , Nanopartículas , Fotoquimioterapia , Quitosana/química , Quitosana/uso terapêutico , Café , Humanos , Nanopartículas/química , Tamanho da Partícula , Rosa Bengala/farmacologia , Rosa Bengala/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA