Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioelectromagnetics ; 44(1-2): 5-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36786477

RESUMO

Previous research has shown that virus infectivity can be dramatically reduced by radio frequency exposure in the gigahertz (GHz) frequency range. Given the worldwide SARS-CoV-2 pandemic, which has caused over 1 million deaths and has had a profound global economic impact, there is a need for a noninvasive technology that can reduce the transmission of virus among humans. RF is a potential wide area-of-effect viral decontamination technology that could be used in hospital rooms where patients are expelling virus, in grocery and convenience stores where local populations mix, and in first responder settings where rapid medical response spans many potentially infected locations within hours. In this study, we used bovine coronavirus (BCoV) as a surrogate of SARS-CoV-2 and exposed it to high peak power microwave (HPPM) pulses at four narrowband frequencies: 2.8, 5.6, 8.5, and 9.3 GHz. Exposures consisted of 2 µs pulses delivered at 500 Hz, with pulse counts varied by decades between 1 and 10,000. The peak field intensities (i.e. the instantaneous power density of each pulse) ranged between 0.6 and 6.5 MW/m2 , depending on the microwave frequency. The HPPM exposures were delivered to plastic coverslips containing BCoV dried on the surface. Hemagglutination (HA) and cytopathic effect analyses were performed 6 days after inoculation of host cells to assess viral infectivity. No change in viral infectivity was seen with increasing dose (pulse number) across the tested frequencies. Under all conditions tested, exposure did not reduce infectivity more than 1.0 log10. For the conditions studied, high peak power pulsed RF exposures in the 2-10 GHz range appear ineffective as a virucidal approach for hard surface decontamination. © 2023 Bioelectromagnetics Society.


Assuntos
COVID-19 , Inativação de Vírus , Animais , Bovinos , Humanos , SARS-CoV-2 , Micro-Ondas
2.
Bioelectromagnetics ; 43(1): 14-24, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34719046

RESUMO

Biological effects in the microwave band of the radiofrequency (RF) spectrum are thermally mediated. For acute high-power microwave exposures, these effects will depend on transient time-temperature histories within the tissue. In this article, we summarize the transient temperature response of rats exposed to RF energy emanating from an open-ended rectangular waveguide. These exposures produced specific absorption rates of approximately 36 and 203 W/kg in the whole body and brain, respectively. We then use the experimentally measured thermal data to infer the baseline perfusion rate in the brain and modify a custom thermal modeling tool based upon these findings. Finally, we compare multi-physics simulations of rat brain temperature against empirical measurements in both live and euthanized subjects and find close agreement between model and experimentation. This research revealed that baseline brain perfusion rates in rat subjects could be larger than previously assumed in the RF thermal modeling literature, and plays a significant role in the transient thermal response to high-power microwave exposures. © 2021 Bioelectromagnetics Society.


Assuntos
Temperatura Corporal , Encéfalo/efeitos da radiação , Ondas de Rádio , Animais , Micro-Ondas/efeitos adversos , Ondas de Rádio/efeitos adversos , Ratos , Temperatura
3.
Bioelectromagnetics ; 39(6): 441-450, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29984850

RESUMO

Nanosecond electric pulse (nsEP) exposure generates an array of physiological effects. The extent of these effects is impacted by whether the nsEP is a unipolar (UP) or bipolar (BP) exposure. A 600 ns pulse can generate 71% more YO-PRO-1 uptake compared to a 600 ns + 600 ns pulse exposure. This observation is termed "bipolar cancellation" (BPC) because despite the BP nsEP consisting of an additional 600 ns pulse, it generates reduced membrane perturbation. BPC is achieved by varying pulse amplitudes, and symmetrical and asymmetric pulse widths. The effect appears to reverse by increasing the interphase interval between symmetric BP pulses, suggesting membrane recovery is a BPC factor. To date, the impact of the interphase interval between asymmetrical BP and other BPC-inducing symmetrical BP nsEPs has not been fully explored. Additionally, interpulse intervals beyond 50 µs have not been explored to understand the impact of time between the BP nsEP phases. Here, we surveyed different interphase intervals among symmetrical and asymmetrical BP nsEPs to monitor their impact on BPC of YO-PRO-1 uptake. We identified that a 10 microsecond (ms) interphase interval within a symmetrical 600 ns + 600 ns, and 900 ns + 900 ns pulse can resolve BPC. Furthermore, the interphase interval to resolve asymmetric BPC from a 300 ns + 900 ns pulse versus 600 ns pulse exposure is greater (<10 ms) compared to symmetrical BP nsEPs. From these findings, we extended on our conceptual model that BPC is balanced by localized charging and discharging events across the membrane. Bioelectromagnetics. 39:441-450, 2018. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Membrana Celular/metabolismo , Estimulação Elétrica/métodos , Animais , Benzoxazóis/farmacocinética , Células CHO , Permeabilidade da Membrana Celular , Cricetulus , Corantes Fluorescentes/farmacocinética , Microscopia Confocal , Compostos de Quinolínio/farmacocinética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA