Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834370

RESUMO

Numerous studies have reported the pharmacological effects exhibited by Dittrichia viscosa, (D. viscosa) including antioxidant, cytotoxic, antiproliferative, and anticancer properties. In our research, our primary objective was to validate a prescreening methodology aimed at identifying the fraction that demonstrates the most potent antiproliferative and anticancer effects. Specifically, we investigated the impact of various extract fractions on the cytoskeleton using a screening method involving transgenic plants. Tumors are inherently heterogeneous, and the components of the cytoskeleton, particularly tubulin, are considered a strategic target for antitumor agents. To take heterogeneity into account, we used different lines of colorectal cancer, specifically one of the most common cancers regardless of gender. In patients with metastasis, the effectiveness of chemotherapy has been limited by severe side effects and by the development of resistance. Additional therapies and antiproliferative molecules are therefore needed. In our study, we used colon-like cell lines characterized by the expression of gastrointestinal differentiation markers (such as the HT-29 cell line) and undifferentiated cell lines showing the positive regulation of epithelial-mesenchymal transition and TGFß signatures (such as the DLD-1, SW480, and SW620 cell lines). We showed that all three of the D. viscosa extract fractions have an antiproliferative effect but the pre-screening on transgenic plants anticipated that the methanolic fraction may be the most promising, targeting the cytoskeleton specifically and possibly resulting in fewer side effects. Here, we show that the preliminary use of screening in transgenic plants expressing subcellular markers can significantly reduce costs and focus the advanced characterization only on the most promising therapeutic molecules.


Assuntos
Asteraceae , Neoplasias Colorretais , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Metanol/farmacologia , Células HT29 , Citoesqueleto , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico
2.
Int J Mol Sci ; 21(13)2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32635635

RESUMO

Heavy metals (HMs) are released into the environment by many human activities and persist in water even after remediation. The efficient filtration of solubilized HMs is extremely difficult. Phytoremediation appears a convenient tool to remove HMs from polluted water, but it is limited by the choice of plants able to adapt to filtration of polluted water in terms of space and physiological needs. Biomasses are often preferred. Aquatic moss biomasses, thanks to gametophyte characteristics, can act as live filtering material. The potential for phytoremediation of Hypnales aquatic mosses has been poorly investigated compared to aquatic macrophytes. Their potential is usually indicated as a tool for bioindication and environmental monitoring more than for pollutant removal. When phytoremediation has been considered, insufficient attention has been paid to the adaptability of biomasses to different needs. In this study the heavy metal uptake of moss Taxiphyllum barbieri grown in two different light conditions, was tested with high concentrations of elements such as Pb, Cd, Zn, Cu, As, and Cr. This moss produces dense mats with few culture needs. The experimental design confirmed the capacity of the moss to accumulate HMs accordingly to their physiology and then demonstrated that a significant proportion of HMs was accumulated within a few hours. In addition to the biosorption effect, an evident contribution of the active simplistic mass can be evidenced. These reports of HM accumulation within short time intervals, show how this moss is particularly suitable as an adaptable bio-filter, representing a new opportunity for water eco-sustainable remediation.


Assuntos
Briófitas , Metais Pesados/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Biodegradação Ambiental , Pectinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA