RESUMO
Three Portuguese olive oils with PDO ('Azeite do Alentejo Interior', 'Azeites da Beira Interior' and 'Azeite de Trás-os-Montes') were studied considering their physicochemical quality, antioxidant capacity, oxidative stability, total phenols content, gustatory sensory sensations and Fourier transform infrared (FTIR) spectra. All oils fulfilled the legal thresholds of EVOOs and the PDO's specifications. Olive oils from 'Azeite da Beira Interior' and 'Azeite de Trás-os-Montes' showed greater total phenols contents and antioxidant capacities, while 'Azeites da Beira Interior' presented higher oxidative stabilities. Linear discriminant models were developed using FTIR spectra (transmittance and the 1st and 2nd derivatives), allowing the correct identification of the oils' PDO (100 % sensitivity and specificity, repeated K-fold-CV). This study also revealed that multiple linear regression models, based on FTIR transmittance data, could predict the sweet, bitter, and pungent intensities of the PDO oils (R2 ≥0.979±0.016; RMSE≤0.26±0.05, repeated K-fold-CV). This demonstrates the potential of using FTIR as a non-destructive technique for authenticating oils with PDO.
Assuntos
Antioxidantes , Fenóis , Azeite de Oliva/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise de Fourier , Portugal , Fenóis/análise , Óleos de Plantas/químicaRESUMO
Olive oils from seven Portuguese regions were selected to study the effect of the geographical origin on the oils' composition. Quality parameters, fatty acids, tocopherols, hydroxytyrosol and tyrosol derivatives, and oxidative stability were evaluated. All olive oils could be classified as extra virgin, and the geographical origin significantly affected the oils chemical composition. Principal component analysis further confirmed the significant impact of the geographical origin on the composition and, indirectly, on stability of the oils, showing that the evaluated parameters could be used as markers for geographical origin identification. Alternatively, Fourier transform infrared spectroscopy was applied, allowing to establish a linear discriminant model that correctly identified the geographical origin of the olive oils with a mean sensitivity of 99 ± 3 % (internal validation), confirming the impact of the oil origin on its characteristics. This finding allowed foreseeing the future application of the spectroscopy approach as a green, fast and non-invasive authentication tool.
Assuntos
Galega , Ácidos Graxos/análise , Azeite de Oliva/química , Óleos de Plantas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tocoferóis/químicaRESUMO
Developing biodegradable active films has been a promising green approach to overcoming global concerns over the environmental pollution and human health caused by plastic utilization. This study aimed to develop active films based on chitosan (CS), produced from waste crayfish (Procambarus clarkii) shells enriched with bioactive extract (5-20%) of propolis (PS) and to characterize its properties, envisaging food packaging applications. The chromatographic profile of PS extract confirmed its richness, with 41 phenolic compounds. With increasing extract addition to the chitosan, the thickness of the films increased from 61.7 to 71.7 µm, causing a reduction in the light transmission rate, along with a greenish colour shift. The interactions between PS extract and CS was confirmed by infrared spectroscopy, at the same time that the microstructural integrity of the films was checked on the scanning electron microscopy micrographs. The findings also showed that addition of PS enhanced the films thermal stability and mechanical properties e.g., tensile modulus, yield strength, and stress at break. Besides, it improved the antioxidant and antimicrobial activities. Overall, CS-based composite films seem a promising green alternative to petroleum-based synthetic plastics allowing to extend the shelf life of food products due to their eco-friendly nature.
Assuntos
Quitosana , Própole , Quitosana/química , Embalagem de Alimentos/métodos , Humanos , Extratos Vegetais/química , Polifenóis/químicaRESUMO
In this work, hydroalcoholic extracts of two mushrooms species, Suillus luteus (L.: Fries) (Sl) and Coprinopsis atramentaria (Bull.) (Ca), were studied for their synergistic antioxidant effect and their viability as functional food ingredients tested by incorporation into a food matrix (cottage cheese). In a first step, the individual extracts and a combination of both, showing synergistic effects (Sl:Ca, 1:1), were microencapsulated by spray-drying using maltodextrin as the encapsulating material. The incorporation of free extracts resulted in products with a higher initial antioxidant activity (t0) but declining after 7 days (t7), which was associated with their degradation. However, the cottage cheese enriched with the microencapsulated extracts, that have revealed a lower activity at the initial time, showed an increase at t7. This improvement can be explained by an effective protection provided by the microspheres together with a sustained release. Analyses performed on the studied cottage cheese samples showed the maintenance of the nutritional properties and no colour modifications were noticed.
Assuntos
Agaricales/química , Composição de Medicamentos/métodos , Alimento Funcional/análise , Extratos Vegetais/química , AntioxidantesRESUMO
Rubus ulmifolius Schott (Rosaceae), known as wild blackberry, is a perennial shrub found in wild and cultivated habitats in Europe, Asia and North Africa. Traditionally, it is used for homemade remedies because of its medicinal properties, including antioxidant activity. In the present work, phenolic extracts of R. ulmifolius flower buds obtained by decoction and hydroalcoholic extraction were chemically and biologically characterized. Several phenolic compounds were identified in both decoction and hydroalcoholic extracts of flowers, ellagitannin derivatives being the most abundant ones, namely the sanguiin H-10 isomer and lambertianin. Additionally, comparing with the decoction form, the hydroalcoholic extract presented both higher phenolic content and antioxidant activity. The hydroalcoholic extract was thereafter microencapsulated in an alginate-based matrix and incorporated into a yogurt to achieve antioxidant benefits. In what concerns the performed incorporation tests, the obtained results pointed out that, among the tested samples, the yoghurt containing the microencapsulated extract presented a slightly higher antioxidant activity, and that both forms (free and microencapsulated extracts) gave rise to products with higher activity than the control. In conclusion, this study demonstrated the antioxidant potential of the R. ulmifolius hydroalcoholic extract and the effectiveness of the microencapsulation technique used for its preservation, thus opening new prospects for the exploitation of these natural phenolic extracts in food applications.