RESUMO
Shigella is one of the major enteric pathogens worldwide. We present a murine model of S. flexneri infection and investigate the role of zinc deficiency (ZD). C57BL/6 mice fed either standard chow (HC) or ZD diets were pretreated with an antibiotic cocktail and received S. flexneri strain 2457T orally. Antibiotic pre-treated ZD mice showed higher S. flexneri colonization than non-treated mice. ZD mice showed persistent colonization for at least 50 days post-infection (pi). S. flexneri-infected mice showed significant weight loss, diarrhea and increased levels of fecal MPO and LCN in both HC and ZD fed mice. S. flexneri preferentially colonized the colon, caused epithelial disruption and inflammatory cell infiltrate, and promoted cytokine production which correlated with weight loss and histopathological changes. Infection with S. flexneri ΔmxiG (critical for type 3 secretion system) did not cause weight loss or diarrhea, and had decreased stool shedding duration and tissue burden. Several biochemical changes related to energy, inflammation and gut-microbial metabolism were observed. Zinc supplementation increased weight gains and reduced intestinal inflammation and stool shedding in ZD infected mice. In conclusion, young antibiotic-treated mice provide a new model of oral S. flexneri infection, with ZD promoting prolonged infection outcomes.
Assuntos
Diarreia/patologia , Modelos Animais de Doenças , Disenteria Bacilar/patologia , Shigella flexneri/patogenicidade , Zinco/deficiência , Animais , Antibacterianos/administração & dosagem , Peso Corporal , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Diarreia/tratamento farmacológico , Diarreia/metabolismo , Diarreia/microbiologia , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/metabolismo , Disenteria Bacilar/microbiologia , Fezes/enzimologia , Fezes/microbiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Metaboloma , Camundongos Endogâmicos C57BL , Mutação , Shigella flexneri/genética , Shigella flexneri/crescimento & desenvolvimento , Sistemas de Secreção Tipo III/genéticaRESUMO
Diarrhea is a common illness among travelers to resource-limited countries, the most prevalent attributable agent being enterotoxigenic Escherichia coli (ETEC). At this time, there are no vaccines licensed specifically for the prevention of ETEC-induced traveler's diarrhea (TD), and this has propelled investigation of alternative preventive methods. Colostrum, the first milk expressed after birthing, is rich in immunoglobulins and innate immune components for protection of newborns against infectious agents. Hyperimmune bovine colostrum (HBC) produced by immunization of cows during gestation (and containing high levels of specific antibodies) is a practical and effective prophylactic tool against gastrointestinal illnesses. A commercial HBC product, Travelan, is available for prevention of ETEC-induced diarrhea. Despite its demonstrated clinical efficacy, the underlying immune components and antimicrobial activity that contribute to protection remain undefined. We investigated innate and adaptive immune components of several commercial HBC products formulated to reduce the risk of ETEC-induced diarrhea, including Travelan and IMM-124E, a newer product that has broader gastrointestinal health benefits. The immune components measured included total and ETEC-specific IgG, total IgA, cytokines, growth factors, and lactoferrin. HBC products contained high levels of IgG specific for multiple ETEC antigens, including O-polysaccharide 78 and colonization factor antigen I (CFA/I) present in the administered vaccines. Antimicrobial activity was measured in vitro using novel functional assays. HBC greatly reduced ETEC motility in soft agar and exhibited bactericidal activity in the presence of complement. We have identified immune components and antimicrobial activity potentially involved in the prevention of ETEC infection by HBC in vivo.
Assuntos
Anticorpos Antibacterianos/imunologia , Colostro/imunologia , Escherichia coli Enterotoxigênica/imunologia , Proteínas de Escherichia coli/imunologia , Fatores Imunológicos/análise , Animais , Bovinos , Colostro/química , Citocinas/análise , Citocinas/imunologia , Diarreia/prevenção & controle , Enterotoxinas/imunologia , Infecções por Escherichia coli/prevenção & controle , Feminino , Proteínas de Fímbrias/imunologia , Humanos , Imunoglobulina A , Imunoglobulina G , Peptídeos e Proteínas de Sinalização Intercelular/análise , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Lactoferrina/análise , Lactoferrina/imunologia , Gravidez , Ensaios de Anticorpos Bactericidas SéricosRESUMO
Measles virus (MV) hemagglutinin (MV-H) and fusion (MV-F) proteins induce plaque reduction neutralizing (PRN) antibodies and cell-mediated immune responses that protect against clinical measles. DNA vaccines that encode MV-H and MV-F are being investigated as a new generation of measles vaccine to protect infants too young to receive currently licensed attenuated measles vaccines. However, it is unclear whether DNA vaccines encoding both MV-H and MV-F act synergistically to induce stronger immunity than immunization with plasmids encoding MV-H or MV-F alone. To address this question, we generated Sindbis virus-based pSINCP DNA vaccines that encode either MV-H or MV-F alone or bicistronic or fusion system vectors that encode both MV-H and MV-F (to mimic MV infection where both MV-H and MV-F proteins are expressed by the same mammalian cell). Mice immunized with DNA vaccine encoding MV-H alone developed significantly greater PRN titers than mice immunized with bicistronic constructs. Interestingly, the presence of MV-F in the bicistronic constructs stimulated serum MV-specific immunoglobulin G of reduced avidity. By contrast, mice immunized with bicistronic constructs induced equivalent or higher levels of MV-specific gamma interferon responses than mice immunized with DNA vaccine encoding MV-H alone. These data will help guide the design of DNA-based MV vaccines to be used early in life in a heterologous prime-boost strategy.