Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heart Rhythm ; 19(1): 102-112, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534699

RESUMO

BACKGROUND: Detailed effects of electrode size on electrograms (EGMs) have not been systematically examined. OBJECTIVES: We aimed to elucidate the effect of electrode size on EGMs and investigate an optimal configuration of electrode size and interelectrode spacing for gap detection and far-field reduction. METHODS: This study included 8 sheep in which probes with different electrode size and interelectrode spacing were epicardially placed on healthy, fatty, and lesion tissues for measurements. Between 3 electrode sizes (0.1 mm/0.2 mm/0.5 mm) with 3 mm spacing. As indices of capability in gap detection and far-field reduction, in different electrode sizes (0.1 mm/0.2 mm/0.5 mm) and interelectrode spacing (0.1 mm/0.2 mm/0.3 mm/0.5 mm/3 mm) and the optimized electrode size and interelectrode spacing were determined. Compared between PentaRay and the optimal probe determined in study 2. RESULTS: Study 1 demonstrated that unipolar voltage and the duration of EGMs increased as the electrode size increased in any tissue (P < .001). Bipolar EGMs had the same tendency in healthy/fat tissues, but not in lesions. Study 2 showed that significantly higher gap to lesion volume ratio and healthy to fat tissue voltage ratio were provided by a smaller electrode (0.2 mm or 0.3 mm electrode) and smaller spacing (0.1 mm spacing), but 0.3 mm electrode/0.1 mm spacing provided a larger bipolar voltage (P < .05). Study 3 demonstrated that 0.3 mm electrode/0.1 mm spacing provided less deflection with more discrete EGMs (P < .0001) with longer and more reproducible AF cycle length (P < .0001) compared to PentaRay. CONCLUSION: Electrode size affects both unipolar and bipolar EGMs. Catheters with microelectrodes and very small interelectrode spacing may be superior in gap detection and far-field reduction. Importantly, this electrode configuration could dramatically reduce artifactual complex fractionated atrial electrograms and may open a new era for AF mapping.


Assuntos
Eletrodos , Técnicas Eletrofisiológicas Cardíacas/instrumentação , Animais , Ablação por Cateter , Modelos Animais de Doenças , Desenho de Equipamento , Feminino , Carneiro Doméstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA