Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 131(12): 2555-2566, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30159644

RESUMO

KEY MESSAGE: We achieved improved mapping resolution of the major wart resistance locus Xla-TNL containing also Sen1 in a dihaploid population using SNP data and developed additional markers with diagnostic value in tetraploid varieties. We analyzed a segregating monoparental dihaploid potato population comprising 215 genotypes derived from a tetraploid variety that is highly resistant to Synchytrium endobioticum pathotypes 18 and 6. The clear bimodal segregation for both pathotypes indicated that a major dominant resistance factor in a simplex allele configuration was present in the tetraploid donor genotype. Compared to that in previous analyses of the same tetraploid donor in conventional crosses with susceptible tetraploid genotypes, a segregation pattern with a reduced genetic complexity of resistance in dihaploids was observed here. Using the 12.8 k SolCAP SNP array, we mapped a resistance locus to the Xla-TNL region containing also Sen1 on potato chromosome 11. The improved mapping resolution provided by the monoparental dihaploids allowed for the localization of the genes responsible for the resistance to both pathotypes in an interval spanning less than 800 kbp on the reference genome. Furthermore, we identified eight molecular markers segregating without recombination to pathotype 18 and pathotype 6 resistance. Also, two developed markers display improved diagnostic properties in an independent panel of tetraploid varieties. Overall, our data provide the highest resolution mapping of wart resistance genes at the Xla-TNL locus thus far.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Solanum tuberosum/genética , Alelos , Quitridiomicetos/patogenicidade , Genes de Plantas , Marcadores Genéticos , Genótipo , Repetições de Microssatélites , Fenótipo , Doenças das Plantas/microbiologia , Tumores de Planta/genética , Tumores de Planta/microbiologia , Polimorfismo de Nucleotídeo Único , Polimorfismo Conformacional de Fita Simples , Solanum tuberosum/microbiologia , Tetraploidia
2.
Phytopathology ; 107(3): 322-328, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27827007

RESUMO

Synchytrium endobioticum is an obligate biotrophic fungus that causes wart diseases in potato. Like other species of the class Chytridiomycetes, it does not form mycelia and its zoospores are small, approximately 3 µm in diameter, which complicates the detection of early stages of infection. Furthermore, potato wart disease is difficult to control because belowground organs are infected and resting spores of the fungus are extremely durable. Thus, S. endobioticum is classified as a quarantine organism. More than 40 S. endobioticum pathotypes have been reported, of which pathotypes 1(D1), 2(G1), 6(O1), 8(F1), and 18(T1) are the most important in Germany. No molecular methods for the differentiation of pathotypes are available to date. In this work, we sequenced both genomic DNA and cDNA of the German pathotype 18(T1) from infected potato tissue and generated 5,422 expressed sequence tags (EST) and 423 genomic contigs. Comparative sequencing of 33 genes, single-stranded confirmation polymorphism (SSCP) analysis with polymerase chain reaction fragments of 27 additional genes, as well as the analysis of 41 simple sequence repeat (SSR) loci revealed extremely low levels of variation among five German pathotypes. From these markers, one sequence-characterized amplified region marker and five SSR markers revealed polymorphisms among the German pathotypes and an extended set of 11 additional European isolates. Pathotypes 8(F1) and 18(T1) displayed discrete polymorphisms which allow their differentiation from other pathotypes. Overall, using the information of the six markers, the 16 isolates could be differentiated into three distinct genotype groups. In addition to the presented markers, the new collection of EST from genus Synchytrium might serve in the future for molecular taxonomic studies as well as for analyses of the host-pathogen interactions in this difficult pathosystem. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Assuntos
Quitridiomicetos/genética , Genômica , Transcriptoma , Quitridiomicetos/isolamento & purificação , Etiquetas de Sequências Expressas , Marcadores Genéticos/genética , Genótipo , Alemanha , Repetições de Microssatélites/genética , Doenças das Plantas/microbiologia , Polimorfismo Genético , Solanum tuberosum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA