Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Pharmacol Res Perspect ; 7(6): e00523, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31624633

RESUMO

Many compounds that appear promising in preclinical species, fail in human clinical trials due to safety concerns. The FDA has strongly encouraged the application of modeling in drug development to improve product safety. This study illustrates how DILIsym, a computational representation of liver injury, was able to reproduce species differences in liver toxicity due to PF-04895162 (ICA-105665). PF-04895162, a drug in development for the treatment of epilepsy, was terminated after transaminase elevations were observed in healthy volunteers (NCT01691274). Liver safety concerns had not been raised in preclinical safety studies. DILIsym, which integrates in vitro data on mechanisms of hepatotoxicity with predicted in vivo liver exposure, reproduced clinical hepatotoxicity and the absence of hepatotoxicity observed in the rat. Simulated differences were multifactorial. Simulated liver exposure was greater in humans than rats. The simulated human hepatotoxicity was demonstrated to be due to the interaction between mitochondrial toxicity and bile acid transporter inhibition; elimination of either mechanism from the simulations abrogated injury. The bile acid contribution occurred despite the fact that the IC50 for bile salt export pump (BSEP) inhibition by PF-04895162 was higher (311 µmol/L) than that has been generally thought to contribute to hepatotoxicity. Modeling even higher PF-04895162 liver exposures than were measured in the rat safety studies aggravated mitochondrial toxicity but did not result in rat hepatotoxicity due to insufficient accumulation of cytotoxic bile acid species. This investigative study highlights the potential for combined in vitro and computational screening methods to identify latent hepatotoxic risks and paves the way for similar and prospective studies.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Anticonvulsivantes/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Biológicos , Quinazolinas/toxicidade , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Adolescente , Adulto , Animais , Anticonvulsivantes/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Simulação por Computador , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/normas , Epilepsia/tratamento farmacológico , Células HEK293 , Voluntários Saudáveis , Hepatócitos , Humanos , Concentração Inibidora 50 , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Quinazolinas/administração & dosagem , Ratos , Especificidade da Espécie , Ácido Taurocólico/metabolismo , Adulto Jovem
2.
Expert Opin Drug Metab Toxicol ; 9(4): 459-72, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23331046

RESUMO

INTRODUCTION: Membrane transporters have been recognized to play a key role in determining the absorption, distribution and elimination processes of drugs. The organic anion-transporting polypeptide (OATP)1B1 and OATP1B3 isoforms are selectively expressed in the human liver and are known to cause significant drug-drug interactions (DDIs), as observed with an increasing number of drugs. It is evident that DDIs involving hepatic transporters are capable of altering systemic, as well as tissue-specific, exposure of drug substrates resulting in marked differences in drug safety and/or efficacy. It is therefore essential to quantitatively predict such interactions early in the drug development to mitigate clinical risks. AREAS COVERED: The role of hepatic uptake transporters in drug disposition and clinical DDIs has been reviewed with an emphasis on the current state of the models applicable for quantitative predictions. The readers will also gain insight into the in vitro experimental tools available to characterize transport kinetics, while appreciating the knowledge gaps in the in vitro-in vivo extrapolation (IVIVE), which warrant further investigation. EXPERT OPINION: Static and dynamic models can be convincingly applied to quantitatively predict drug interactions, early in drug discovery, to mitigate clinical risks as well as to avoid unnecessary clinical studies. Compared to basic models, which focus on individual processes, mechanistic models provide the ability to assess DDI potential for compounds with systemic disposition determined by both transporters and metabolic enzymes. However, complexities in the experimental tools and an apparent disconnect in the IVIVE of transport kinetics have limited the physiologically based pharmacokinetic modeling strategies. Emerging data on the expression of transporter proteins and tissue drug concentrations are expected to help bridge these gaps. In addition, detailed characterization of substrate kinetics can facilitate building comprehensive mechanistic models.


Assuntos
Fígado/citologia , Fígado/efeitos dos fármacos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Linhagem Celular , Fenômenos Químicos , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Fluorbenzenos/farmacocinética , Fluorbenzenos/uso terapêutico , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Cinética , Fígado/metabolismo , Modelos Teóricos , Pravastatina/farmacocinética , Pravastatina/uso terapêutico , Pirimidinas/farmacocinética , Pirimidinas/uso terapêutico , Rosuvastatina Cálcica , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico
3.
Drug Metab Dispos ; 40(6): 1085-92, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22381335

RESUMO

To assess the feasibility of using sandwich-cultured human hepatocytes (SCHHs) as a model to characterize transport kinetics for in vivo pharmacokinetic prediction, the expression of organic anion-transporting polypeptide (OATP) proteins in SCHHs, along with biliary efflux transporters, was confirmed quantitatively by liquid chromatography-tandem mass spectrometry. Rifamycin SV (Rif SV), which was shown to completely block the function of OATP transporters, was selected as an inhibitor to assess the initial rates of active uptake. The optimized SCHH model was applied in a retrospective investigation of compounds with known clinically significant OATP-mediated uptake and was applied further to explore drug-drug interactions (DDIs). Greater than 50% inhibition of active uptake by Rif SV was found to be associated with clinically significant OATP-mediated DDIs. We propose that the in vitro active uptake value therefore could serve as a cutoff for class 3 and 4 compounds of the Biopharmaceutics Drug Disposition Classification System, which could be integrated into the International Transporter Consortium decision tree recommendations to trigger clinical evaluations for potential DDI risks. Furthermore, the kinetics of in vitro hepatobiliary transport obtained from SCHHs, along with protein expression scaling factors, offer an opportunity to predict complex in vivo processes using mathematical models, such as physiologically based pharmacokinetics models.


Assuntos
Interações Medicamentosas/fisiologia , Hepatócitos/metabolismo , Preparações Farmacêuticas/metabolismo , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA