Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hypertens ; 34(3): 464-73; discussion 473, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26820476

RESUMO

OBJECTIVE: High-fat diet (HFD)-induced hypertension in rabbits is neurogenic because of the central sympathoexcitatory actions of leptin. Hypothalamic melanocortin and neuropeptide Y (NPY) neurons are recognized as the major signalling pathways through which leptin exerts its central effects. In this study, we assessed the effects of specific antagonists and agonists to melanocortin and NPY receptors on HFD-induced sympathoexcitation and hypertension. METHODS: Rabbits were instrumented with intracerebroventricular cannula, renal sympathetic nerve activity (RSNA) electrode, and blood pressure telemetry transmitter. RESULTS: After 3 weeks HFD (13.5% fat, n = 12) conscious rabbits had higher RSNA (+3.8  nu, P = 0.02), blood pressure (+8.6  mmHg, P < 0.001) and heart rate (+15  b/min, P = 0.01), and brain-derived neurotrophic factor levels in the hypothalamus compared with rabbits fed a control diet (4.2% fat, n = 11). Intracerebroventricular administration of the melanocortin receptor antagonist SHU9119 reduced RSNA (-2.7  nu) and blood pressure (-8.5  mmHg) in HFD but not control rabbits, thus reversing 100% of the hypertension and 70% of the sympathoexcitation induced by a HFD. By contrast, blocking central NPY Y1 receptors with BVD10 increased RSNA only in HFD rabbits. Intracerebroventricular α-melanocortin stimulating hormone increased RSNA and heart rate (P < 0.001) in HFD rabbits but had no effect in control rabbits. CONCLUSION: These findings suggest that obesity-induced hypertension and increased RSNA are dependent on the balance between greater activation of melanocortin signalling through melanocortin receptors and lesser activation of NPY sympathoinhibitory signalling. The amplification of the sympathoexcitatory effects of α-melanocortin stimulating hormone also indicates that the underlying mechanism is related to facilitation of leptin-melanocortin signalling, possibly involving chronic activation of brain-derived neurotrophic factor.


Assuntos
Hipertensão/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores de Melanocortina/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dieta Hiperlipídica , Frequência Cardíaca/efeitos dos fármacos , Hormônios/farmacologia , Hipertensão/fisiopatologia , Rim/inervação , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Obesidade/fisiopatologia , Coelhos , Receptores da Corticotropina/antagonistas & inibidores , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia , alfa-MSH/farmacologia
2.
Chronobiol Int ; 30(5): 726-38, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23688116

RESUMO

Consumption of a high-fat diet (HFD) by rabbits results in increased blood pressure (BP), heart rate (HR), and renal sympathetic nerve activity (RSNA) within 1 wk. Here, we determined how early this activation occurred and whether it was related to changes in cardiovascular and neural 24-h rhythms. Rabbits were meal-fed a HFD for 3 wks, then a normal-fat diet (NFD) for 1 wk. BP, HR, and RSNA were measured daily in the home cage via implanted telemeters. Baseline BP, HR, and RSNA over 24 h were 71 ± 1 mm Hg, 205 ± 4 beats/min and 7 ± 1 normalized units (nu). The 24-h pattern was entrained to the feeding cycle and values increased from preprandial minimum to postprandial maximum by 4 ± 1 mm Hg, 51 ± 6 beats/min, and 1.6 ± .6 nu each day. Feeding of a HFD markedly diminished the preprandial dip after 2 d (79-125% of control; p < 0.05) and this reduction lasted for 3 wks of HFD. Twenty-four-hour BP, HR, and RSNA concurrently increased by 2%, 18%, and 22%, respectively. Loss of preprandial dipping accounted for all of the BP increase and 50% of the RSNA increase over 3 wks and the 24-h rhythm became entrained to the light-dark cycle. Resumption of a NFD did not alter the BP preprandial dip. Thus, elevated BP induced by a HFD and mediated by increased sympathetic nerve activity results from a reduction in preprandial dipping, from the first day. Increased calories, glucose, insulin, and leptin may account for early changes, whereas long-term loss of dipping may be related to increased sensitivity of sympathetic pathways.


Assuntos
Pressão Sanguínea , Dieta Hiperlipídica , Hipertensão/fisiopatologia , Rim/inervação , Sistema Nervoso Simpático/fisiologia , Ração Animal , Animais , Peso Corporal , Ritmo Circadiano , Gorduras na Dieta , Frequência Cardíaca , Hipotálamo/fisiologia , Masculino , Obesidade/complicações , Coelhos , Núcleo Supraquiasmático/metabolismo , Telemetria/métodos
3.
Hypertension ; 55(4): 862-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20194306

RESUMO

The activation of the sympathetic nervous system through the central actions of the adipokine leptin has been suggested as a major mechanism by which obesity contributes to the development of hypertension. However, direct evidence for elevated sympathetic activity in obesity has been limited to muscle. The present study examined the renal sympathetic nerve activity and cardiovascular effects of a high-fat diet (HFD), as well as the changes in the sensitivity to intracerebroventricular leptin. New Zealand white rabbits fed a 13.5% HFD for 4 weeks showed modest weight gain but a 2- to 3-fold greater accumulation of visceral fat compared with control rabbits. Mean arterial pressure, heart rate, and plasma norepinephrine concentration increased by 8%, 26%, and 87%, respectively (P<0.05), after 3 weeks of HFD. Renal sympathetic nerve activity was 48% higher (P<0.05) in HFD compared with control diet rabbits and was correlated to plasma leptin (r=0.87; P<0.01). Intracerebroventricular leptin administration (5 to 100 microg) increased mean arterial pressure similarly in both groups, but renal sympathetic nerve activity increased more in HFD-fed rabbits. By contrast, intracerebroventricular leptin produced less neurons expressing c-Fos in HFD compared with control rabbits in regions important for appetite and sympathetic actions of leptin (arcuate: -54%, paraventricular: -69%, and dorsomedial hypothalamus: -65%). These results suggest that visceral fat accumulation through consumption of a HFD leads to marked sympathetic activation, which is related to increased responsiveness to central sympathoexcitatory effects of leptin. The paradoxical reduction in hypothalamic neuronal activation by leptin suggests a marked "selective leptin resistance" in these animals.


Assuntos
Pressão Sanguínea/fisiologia , Gorduras na Dieta/metabolismo , Rim/inervação , Leptina/metabolismo , Receptores para Leptina/metabolismo , Sistema Nervoso Simpático/metabolismo , Análise de Variância , Animais , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/fisiologia , Cateteres de Demora , Gorduras na Dieta/farmacologia , Relação Dose-Resposta a Droga , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Hipotálamo/metabolismo , Injeções Intraventriculares , Gordura Intra-Abdominal/metabolismo , Leptina/administração & dosagem , Masculino , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Coelhos , Sistema Nervoso Simpático/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA