Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Parkinsons Dis ; 13(5): 797-809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37270810

RESUMO

BACKGROUND: The hypothesis that the effectiveness of deep brain stimulation (DBS) in Parkinson's disease (PD) would be related to connectivity dysfunctions between the site of stimulation and other brain regions is growing. OBJECTIVE: To investigate how the subthalamic nucleus (STN), the most frequently used DBS target for PD, is functionally linked to other brain regions in PD patients according to DBS eligibility. METHODS: Clinical data and resting-state functional MRI were acquired from 60 PD patients and 60 age- and sex-matched healthy subjects within an ongoing longitudinal project. PD patients were divided into 19 patients eligible for DBS and 41 non-candidates. Bilateral STN were selected as regions of interest and a seed-based functional MRI connectivity analysis was performed. RESULTS: A decreased functional connectivity between STN and sensorimotor cortex in both PD patient groups compared to controls was found. Whereas an increased functional connectivity between STN and thalamus was found in PD patient groups relative to controls. Candidates for DBS showed a decreased functional connectivity between bilateral STN and bilateral sensorimotor areas relative to non-candidates. In patients eligible for DBS, a weaker STN functional connectivity with left supramarginal and angular gyri was related with a more severe rigidity and bradykinesia whereas a higher connectivity between STN and cerebellum/pons was related to poorer tremor score. CONCLUSION: Our results suggest that functional connectivity of STN varies among PD patients eligible or not for DBS. Future studies would confirm whether DBS modulates and restores functional connectivity between STN and sensorimotor areas in treated patients.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Tálamo , Imageamento por Ressonância Magnética
3.
Proc Natl Acad Sci U S A ; 117(12): 6836-6843, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32144139

RESUMO

Visuomotor impairments characterize numerous neurological disorders and neurogenetic syndromes, such as autism spectrum disorder (ASD) and Dravet, Fragile X, Prader-Willi, Turner, and Williams syndromes. Despite recent advances in systems neuroscience, the biological basis underlying visuomotor functional impairments associated with these clinical conditions is poorly understood. In this study, we used neuroimaging connectomic approaches to map the visuomotor integration (VMI) system in the human brain and investigated the topology approximation of the VMI network to the Allen Human Brain Atlas, a whole-brain transcriptome-wide atlas of cortical genetic expression. We found the genetic expression of four genes-TBR1, SCN1A, MAGEL2, and CACNB4-to be prominently associated with visuomotor integrators in the human cortex. TBR1 gene transcripts, an ASD gene whose expression is related to neural development of the cortex and the hippocampus, showed a central spatial allocation within the VMI system. Our findings delineate gene expression traits underlying the VMI system in the human cortex, where specific genes, such as TBR1, are likely to play a central role in its neuronal organization, as well as on specific phenotypes of neurogenetic syndromes.


Assuntos
Canais de Cálcio/genética , Córtex Motor/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Transtornos do Neurodesenvolvimento/patologia , Proteínas/genética , Proteínas com Domínio T/genética , Córtex Visual/fisiopatologia , Adulto , Idoso , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Mapeamento Encefálico , Estudos de Coortes , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/genética , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patologia , Desempenho Psicomotor , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA