Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(57): 120044-120062, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37936030

RESUMO

Ascorbic acid (AsA) and selenium nanoparticles (SeNPs) were versatile plant growth regulators, playing multiple roles in promoting plant growth under heavy metal stresses. This study aimed to evaluate the beneficial role of individual and combined effects of AsA and SeNPs on morpho-physio-biochemical traits of rice with or without chromium (Cr) amendment. The results indicated that Cr negatively affected plant biomass, gas exchange parameters, total soluble sugar, proline, relative water contents, and antioxidant-related gene expression via increasing reactive oxygen species (MDA, H2O2, O2•-) formation, resulting in plant growth reduction. The application of AsA and SeNPs, individually or in combination, decreased the uptake and translocation of Cr in rice seedlings, increased seedlings with tolerance to Cr toxicity, and significantly improved the rice seedling growth. Most notably, AsA + SeNP treatment strengthened the antioxidative defense system through ROS quenching and Cr detoxification. The results collectively suggested that the application of AsA and SeNPs alone or in combination had the potential to alleviate Cr toxicity in rice and possibly other crop species.


Assuntos
Oryza , Selênio , Antioxidantes/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Plântula , Selênio/farmacologia , Selênio/metabolismo , Cromo/metabolismo , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Mecanismos de Defesa
2.
J Hazard Mater ; 451: 131085, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870130

RESUMO

Vanadium (V) induced hazardous effects posturing a serious concern on crop production as well as food security. However, the nitric oxide (NO)-mediated alleviation of V-induced oxidative stress in soybean seedlings is still unknown. Therefore, this research was designed to explore the effects of exogenous NO to mitigate the V-induced phytotoxicity in soybean plants. Our upshots disclosed that NO supplementation considerably improved the plant biomass, growth, and photosynthetic attributes by regulating the carbohydrates, and plants biochemical composition, which further improved the guard cells, and stomatal aperture of soybean leaves. Additionally, NO regulated the plant hormones, and phenolic profile which restricted the V contents absorption (65.6%), and translocation (57.9%) by maintaining the nutrient acquisition. Furthermore, it detoxified the excessive V contents, and upsurged the antioxidants defense mechanism to lower the MDA, and scavenge ROS production. The molecular analysis further verified the NO-based regulation of lipid, sugar production, and degradation as well as detoxification mechanism in the soybean seedlings. Exclusively, we elaborated very first time the behind mechanism of V-induced oxidative stress alleviation by exogenous NO, hence illustrating the NO supplementation role as a stress alleviating agent for soybean grown in V contaminated areas to elevate the crop development and production.


Assuntos
Antioxidantes , Glycine max , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glycine max/metabolismo , Óxido Nítrico/metabolismo , Vanádio/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Plântula
3.
Plants (Basel) ; 11(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36079674

RESUMO

Chromium (Cr) phytotoxicity severely inhibits plant growth and development which makes it a prerequisite to developing techniques that prevent Cr accumulation in food chains. However, little is explored related to the protective role of brassinosteroids (BRs) against Cr-induced stress in soybean plants. Herein, the morpho-physiological, biochemical, and molecular responses of soybean cultivars with/without foliar application of BRs under Cr toxicity were intensely investigated. Our outcomes deliberated that BRs application noticeably reduced Cr-induced phytotoxicity by lowering Cr uptake (37.7/43.63%), accumulation (63.92/81.73%), and translocation (26.23/38.14%) in XD-18/HD-19, plant tissues, respectively; besides, improved seed germination ratio, photosynthetic attributes, plant growth, and biomass, as well as prevented nutrient uptake inhibition under Cr stress, especially in HD-19 cultivar. Furthermore, BRs stimulated antioxidative defense systems, both enzymatic and non-enzymatic, the compartmentalization of ion chelation, diminished extra production of reactive oxygen species (ROS), and electrolyte leakage in response to Cr-induced toxicity, specifically in HD-19. In addition, BRs improved Cr stress tolerance in soybean seedlings by regulating the expression of stress-related genes involved in Cr accumulation, and translocation. Inclusively, by considering the above-mentioned biomarkers, foliar spray of BRs might be considered an effective inhibitor of Cr-induced damages in soybean cultivars, even in Cr polluted soil.

4.
Chemosphere ; 302: 134423, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35430206

RESUMO

The chromium (Cr) induced phytotoxicity avowed the scientific community to develop stress mitigation strategies to restrain the Cr accumulation inside the food chain. Whereas, brassinosteroids (BRs), and spermine (SPM) are well-known growth-promoting phytohormones, which enhance the plants health, and resilient the toxic effects under stress conditions. Until now, their interactive role against Cr-mitigation is poorly known. Hence, we conducted the hydroponic experiment to perceive the behavior of seed primed with BRs, or/and SPM treatment against Cr disclosure in two different rice cultivars (CY927; sensitive, YLY689; tolerant). Our findings delineated that BRs (0.01 µM), or/and SPM (0.01 mM) remarkably alleviated Cr-induced phytotoxicity by improving the seed germination ratio, chlorophyll pigments, PSII system, total soluble sugar, and minimizing the MDA contents level, ROS extra generation, and electrolyte leakage through restricting the Cr accretion in roots, and shoots of both rice cultivars under Cr stress. Additionally, the BRs, or/and SPM modulated the antioxidant enzyme, and non-enzyme activities to reduce the Cr-induced cellular oxidative damage as well as maintained the ionic hemostasis in both rice cultivars, especially in YLY689. Concisely, enhanced the plants biomass and growth. Overall, our outcomes revealed that BRs and SPM interact positively to alleviate the Cr-induced damages in rice seedlings on the above-mentioned indices, and combine treatment is much more efficient than solely. Moreover, the effect of BRs, or/and SPM was more obvious in YLY689 than CY927 to hamper the oxidative stress, and boost the antioxidant capacity.


Assuntos
Brassinosteroides , Oryza , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Brassinosteroides/farmacologia , Cromo/toxicidade , Suplementos Nutricionais , Oryza/metabolismo , Estresse Oxidativo , Espermina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA