Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiome ; 9(1): 19, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482913

RESUMO

BACKGROUND: The plant microbiome plays a vital role in determining host health and productivity. However, we lack real-world comparative understanding of the factors which shape assembly of its diverse biota, and crucially relationships between microbiota composition and plant health. Here we investigated landscape scale rhizosphere microbial assembly processes in oilseed rape (OSR), the UK's third most cultivated crop by area and the world's third largest source of vegetable oil, which suffers from yield decline associated with the frequency it is grown in rotations. By including 37 conventional farmers' fields with varying OSR rotation frequencies, we present an innovative approach to identify microbial signatures characteristic of microbiomes which are beneficial and harmful to the host. RESULTS: We show that OSR yield decline is linked to rotation frequency in real-world agricultural systems. We demonstrate fundamental differences in the environmental and agronomic drivers of protist, bacterial and fungal communities between root, rhizosphere soil and bulk soil compartments. We further discovered that the assembly of fungi, but neither bacteria nor protists, was influenced by OSR rotation frequency. However, there were individual abundant bacterial OTUs that correlated with either yield or rotation frequency. A variety of fungal and protist pathogens were detected in roots and rhizosphere soil of OSR, and several increased relative abundance in root or rhizosphere compartments as OSR rotation frequency increased. Importantly, the relative abundance of the fungal pathogen Olpidium brassicae both increased with short rotations and was significantly associated with low yield. In contrast, the root endophyte Tetracladium spp. showed the reverse associations with both rotation frequency and yield to O. brassicae, suggesting that they are signatures of a microbiome which benefits the host. We also identified a variety of novel protist and fungal clades which are highly connected within the microbiome and could play a role in determining microbiome composition. CONCLUSIONS: We show that at the landscape scale, OSR crop yield is governed by interplay between complex communities of both pathogens and beneficial biota which is modulated by rotation frequency. Our comprehensive study has identified signatures of dysbiosis within the OSR microbiome, grown in real-world agricultural systems, which could be used in strategies to promote crop yield. Video abstract.


Assuntos
Brassica napus/crescimento & desenvolvimento , Brassica napus/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Microbiota/genética , Óleo de Brassica napus , Microbiologia do Solo , Fungos/genética , Fungos/isolamento & purificação , Raízes de Plantas/microbiologia , Rizosfera
2.
J Invertebr Pathol ; 186: 107387, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32330478

RESUMO

With rapid increases in the global shrimp aquaculture sector, a focus on animal health during production becomes ever more important. Animal productivity is intimately linked to health, and the gut microbiome is becoming increasingly recognised as an important driver of cultivation success. The microbes that colonise the gut, commonly referred to as the gut microbiota or the gut microbiome, interact with their host and contribute to a number of key host processes, including digestion and immunity. Gut microbiome manipulation therefore represents an attractive proposition for aquaculture and has been suggested as a possible alternative to the use of broad-spectrum antibiotics in the management of disease, which is a major limitation of growth in this sector. Microbiota supplementation has also demonstrated positive effects on growth and survival of several different commercial species, including shrimp. Development of appropriate gut supplements, however, requires prior knowledge of the host microbiome. Little is known about the gut microbiota of the aquatic invertebrates, but penaeid shrimp are perhaps more studied than most. Here, we review current knowledge of information reported on the shrimp gut microbiota, highlighting the most frequently observed taxa and emphasizing the dominance of Proteobacteria within this community. We discuss involvement of the microbiome in the regulation of shrimp health and disease and describe how the gut microbiota changes with the introduction of several economically important shrimp pathogens. Finally, we explore evidence of microbiome supplementation and consider its role in the future of penaeid shrimp production.


Assuntos
Ração Animal/análise , Suplementos Nutricionais , Microbioma Gastrointestinal , Penaeidae/microbiologia , Proteobactérias/química , Animais , Aquicultura , Dieta
3.
ISME J ; 14(2): 531-543, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31676854

RESUMO

Microbial communities within the gut can markedly impact host health and fitness. To what extent environmental influences affect the differential distribution of these microbial populations may therefore significantly impact the successful farming of the host. Using a sea-based container culture (SBCC) system for the on-growing of European lobster (Homarus gammarus), we tracked the bacterial gut microbiota over a 1-year period. We compared these communities with lobsters of the same cohort, retained in a land-based culture (LBC) system to assess the effects of the culture environment on gut bacterial assemblage and describe the phylogenetic structure of the microbiota to compare deterministic and stochastic assembly across both environments. Bacterial gut communities from SBCCs were generally more phylogenetically clustered, and therefore deterministically assembled, compared to those reared in land-based systems. Lobsters in SBCCs displayed significantly more species-rich and species-diverse gut microbiota compared to those retained in LBC. A reduction in the bacterial diversity of the gut was also associated with higher infection prevalence of the enteric viral pathogen Homarus gammarus nudivirus (HgNV). SBCCs may therefore benefit the overall health of the host by promoting the assembly of a more diverse gut bacterial community and reducing the susceptibility to disease.


Assuntos
Microbioma Gastrointestinal/genética , Nephropidae/microbiologia , Nephropidae/virologia , Nudiviridae/isolamento & purificação , Animais , Bactérias/classificação , Suscetibilidade a Doenças/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Interações Microbianas , Filogenia , Alimentos Marinhos/microbiologia , Alimentos Marinhos/virologia , Viroses
4.
Sci Rep ; 9(1): 10086, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300678

RESUMO

Viral diseases of crustaceans are increasingly recognised as challenges to shellfish farms and fisheries. Here we describe the first naturally-occurring virus reported in any clawed lobster species. Hypertrophied nuclei with emarginated chromatin, characteristic histopathological lesions of DNA virus infection, were observed within the hepatopancreatic epithelial cells of juvenile European lobsters (Homarus gammarus). Transmission electron microscopy revealed infection with a bacilliform virus containing a rod shaped nucleocapsid enveloped in an elliptical membrane. Assembly of PCR-free shotgun metagenomic sequencing produced a circular genome of 107,063 bp containing 97 open reading frames, the majority of which share sequence similarity with a virus infecting the black tiger shrimp: Penaeus monodon nudivirus (PmNV). Multiple phylogenetic analyses confirm the new virus to be a novel member of the Nudiviridae: Homarus gammarus nudivirus (HgNV). Evidence of occlusion body formation, characteristic of PmNV and its closest relatives, was not observed, questioning the horizontal transmission strategy of HgNV outside of the host. We discuss the potential impacts of HgNV on juvenile lobster growth and mortality and present HgNV-specific primers to serve as a diagnostic tool for monitoring the virus in wild and farmed lobster stocks.


Assuntos
Doenças dos Peixes/virologia , Nephropidae/virologia , Nudiviridae/classificação , Nudiviridae/genética , Animais , Genoma Viral/genética , Hepatopâncreas/virologia , Microscopia Eletrônica de Transmissão , Nudiviridae/isolamento & purificação , Penaeidae/virologia , Filogenia , Frutos do Mar/virologia
5.
J Invertebr Pathol ; 154: 109-116, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29555081

RESUMO

A parasite exhibiting Oomycete-like morphology and pathogenesis was isolated from discoloured eggs of the European lobster (Homarus gammarus) and later found in gill tissues of adults. Group-specific Oomycete primers were designed to amplify the 18S ribosomal small subunit (SSU), which initially identified the organism as the same as the 'Haliphthoros' sp. NJM 0034 strain (AB178865.1) previously isolated from abalone (imported from South Australia to Japan). However, in accordance with other published SSU-based phylogenies, the NJM 0034 isolate did not group with other known Haliphthoros species in our Maximum Likelihood and Bayesian phylogenies. Instead, the strain formed an orphan lineage, diverging before the separation of the Saprolegniales and Pythiales. Based upon 28S large subunit (LSU) phylogeny, our own isolate and the previously unidentified 0034 strain are both identical to the abalone pathogen Halioticida noduliformans. The genus shares morphological similarities with Haliphthoros and Halocrusticida and forms a clade with these in LSU phylogenies. Here, we confirm the first recorded occurrence of H. noduliformans in European lobsters and associate its presence with pathology of the egg mass, likely leading to reduced fecundity.


Assuntos
Nephropidae/parasitologia , Oomicetos/isolamento & purificação , Animais , Teorema de Bayes , Brânquias/parasitologia , Funções Verossimilhança , Oomicetos/classificação , Óvulo/parasitologia , Filogenia
6.
Biochim Biophys Acta ; 1720(1-2): 14-21, 2005 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-16376294

RESUMO

Secretory A(2) phospholipases (sPLA(2)) hydrolyze surfactant phospholipids cause surfactant dysfunction and are elevated in lung inflammation. Phospholipase-mediated surfactant hydrolysis may disrupt surfactant function by generation of lysophospholipids and free fatty acids and/or depletion of native phospholipids. In this study, we quantitatively assessed multiple mechanisms of sPLA(2)-mediated surfactant dysfunction using non-enzymatic models including supplementation of surfactants with exogenous lysophospholipids and free fatty acids. Our data demonstrated lysophospholipids at levels >or=10 mol% of total phospholipid (i.e., >or=10% hydrolysis) led to a significant increase in minimum surface tension and increased the time to achieve a normal minimum surface tension. Lysophospholipid inhibition of surfactant function was independent of the lysophospholipid head group or total phospholipid concentration. Free fatty acids (palmitic acid, oleic acid) alone had little effect on minimum surface tension, but did increase the maximum surface tension and the time to achieve normal minimum surface tension. The combined effect of equimolar free fatty acids and lysophospholipids was not different from the effect of lysophospholipids alone for any measurement of surfactant function. Surfactant proteins did not change the percent lysophospholipids required to increase minimum surface tension. As a mechanism that causes surfactant dysfunction, depletion of native phospholipids required much greater change (equivalent to >80% hydrolysis) than generation of lysophospholipids. In summary, generation of lysophospholipids is the principal mechanism of phospholipase-mediated surfactant injury in our non-enzymatic models. These models and findings will assist in understanding more complex in vitro and in vivo studies of phospholipase-mediated surfactant injury.


Assuntos
Ácidos Graxos/farmacologia , Lisofosfolipídeos/farmacologia , Fosfolipases A/metabolismo , Surfactantes Pulmonares/antagonistas & inibidores , Animais , Modelos Químicos , Fosfolipases A2 , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Tensão Superficial/efeitos dos fármacos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA