Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 294: 122167, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31563740

RESUMO

One of the hurdles of renewable energy production from photosynthetic microorganisms is separating the biomass from water in cultures. Bioflocculation with filamentous fungus Aspergillus niger, an alternative low-cost method used for such separation, was studied with four cyanobacteria. Cocultures with Spirulina maxima and Synechococcus subsalsus resulted in bioflocculation efficiencies up to 94%, while with Anabaena variabilis and Anabaena siamensis bioflocculation did not occur. S. subsalsus was selected to evaluate the effect of cyanobacterial initial concentration, fungal:cyanobacterial ratio, carbon supplementation, and pH on biomass densification. Bioflocculation efficiencies up to 98% in 48 h were obtained with fungal:cyanobacterial ratio 1:5 and carbon supplementation. Despite the lower efficiency (54%), the highest concentration factor of S. subsalsus suspension (62.8 - from 0.9 to 56.5 g/L) was obtained with ratio 1:5 without supplementation. This result was attributed to the smaller pellet diameter (2.5 mm) and indicated that lower pellet growth is better for biomass densification.


Assuntos
Aspergillus niger , Synechococcus , Biomassa , Carbono , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA