Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
ALTEX ; 39(2): 297­314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35064273

RESUMO

Complex in vitro models (CIVM) offer the potential to improve pharmaceutical clinical drug attrition due to safety and/ or efficacy concerns. For this technology to have an impact, the establishment of robust characterization and qualifi­cation plans constructed around specific contexts of use (COU) is required. This article covers the output from a workshop between the Food and Drug Administration (FDA) and Innovation and Quality Microphysiological Systems (IQ MPS) Affiliate. The intent of the workshop was to understand how CIVM technologies are currently being applied by pharma­ceutical companies during drug development and are being tested at the FDA through various case studies in order to identify hurdles (real or perceived) to the adoption of microphysiological systems (MPS) technologies, and to address evaluation/qualification pathways for these technologies. Output from the workshop includes the alignment on a working definition of MPS, a detailed description of the eleven CIVM case studies presented at the workshop, in-depth analysis, and key take aways from breakout sessions on ADME (absorption, distribution, metabolism, and excretion), pharmacology, and safety that covered topics such as qualification and performance criteria, species differences and concordance, and how industry can overcome barriers to regulatory submission of CIVM data. In conclusion, IQ MPS Affiliate and FDA scientists were able to build a general consensus on the need for animal CIVMs for preclinical species to better determine species concordance. Furthermore, there was acceptance that CIVM technologies for use in ADME, pharmacology and safety assessment will require qualification, which will vary depending on the specific COU.


Assuntos
Alternativas aos Testes com Animais , Dispositivos Lab-On-A-Chip , Animais , Avaliação Pré-Clínica de Medicamentos , Indústria Farmacêutica , Preparações Farmacêuticas/metabolismo , Estados Unidos , United States Food and Drug Administration
2.
Drug Metab Dispos ; 48(11): 1147-1160, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32943412

RESUMO

Hepatocellular accumulation of bile salts by inhibition of bile salt export pump (BSEP/ABCB11) may result in cholestasis and is one proposed mechanism of drug-induced liver injury (DILI). To understand the relationship between BSEP inhibition and DILI, we evaluated 64 DILI-positive and 57 DILI-negative compounds in BSEP, multidrug resistance protein (MRP) 2, MRP3, and MRP4 vesicular inhibition assays. An empirical cutoff (5 µM) for BSEP inhibition was established based on a relationship between BSEP IC50 values and the calculated maximal unbound concentration at the inlet of the human liver (fu*Iin,max, assay specificity = 98%). Including inhibition of MRP2-4 did not increase DILI predictivity. To further understand the potential to inhibit bile salt transport, a selected subset of 30 compounds were tested for inhibition of taurocholate (TCA) transport in a long-term human hepatocyte micropatterned co-culture (MPCC) system. The resulting IC50 for TCA in vitro biliary clearance and biliary excretion index (BEI) in MPCCs were compared with the compound's fu*Iin,max to assess potential risk for bile salt transport perturbation. The data show high specificity (89%). Nine out of 15 compounds showed an IC50 value in the BSEP vesicular assay of <5µM, but the BEI IC50 was more than 10-fold the fu*Iin,max, suggesting that inhibition of BSEP in vivo is unlikely. The data indicate that although BSEP inhibition measured in membrane vesicles correlates with DILI risk, that measurement of this assay activity is insufficient. A two-tiered strategy incorporating MPCCs is presented to reduce BSEP inhibition potential and improve DILI risk. SIGNIFICANCE STATEMENT: This work describes a two-tiered in vitro approach to de-risk compounds for potential bile salt export pump inhibition liabilities in drug discovery utilizing membrane vesicles and a long-term human hepatocyte micropatterned co-culture system. Cutoffs to maximize specificity were established based on in vitro data from a set of 121 DILI-positive and -negative compounds and associated calculated maximal unbound concentration at the inlet of the human liver based on the highest clinical dose.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Descoberta de Drogas/métodos , Ácido Taurocólico/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Técnicas de Cocultura , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos , Humanos , Concentração Inibidora 50 , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
3.
Lab Chip ; 20(2): 215-225, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31799979

RESUMO

The liver is critical to consider during drug development because of its central role in the handling of xenobiotics, a process which often leads to localized and/or downstream tissue injury. Our ability to predict human clinical safety outcomes with animal testing is limited due to species differences in drug metabolism and disposition, while traditional human in vitro liver models often lack the necessary in vivo physiological fidelity. To address this, increasing numbers of liver microphysiological systems (MPS) are being developed, however the inconsistency in their optimization and characterization often leads to models that do not possess critical levels of baseline performance that is required for many pharmaceutical industry applications. Herein we provide a guidance on best approaches to benchmark liver MPS based on 3 stages of characterization that includes key performance metrics and a 20 compound safety test set. Additionally, we give an overview of frequently used liver injury safety assays, describe the ideal MPS model, and provide a perspective on currently best suited MPS contexts of use. This pharmaceutical industry guidance has been written to help MPS developers and end users identify what could be the most valuable models for safety risk assessment.


Assuntos
Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Indústria Farmacêutica , Humanos , Dispositivos Lab-On-A-Chip , Fígado/química , Preparações Farmacêuticas/química , Medição de Risco
4.
Int Immunopharmacol ; 9(10): 1209-14, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19596085

RESUMO

Specific therapies are not available for inflammatory muscle diseases. We and others have shown that the pro-inflammatory NF-kappaB pathway is highly activated in these conditions. Since NF-kappaB is an important therapeutic target, we decided to utilize an in vitro screening assay to identify potential inhibitors that block TNF-alpha induced NF-kappaB activation in a C2C12 muscle line stably expressing an NF-kappaB luciferase reporter gene. Upon evaluation of multiple anti-inflammatory agents in undifferentiated myoblasts as well as differentiated myotubes , we found different levels of inhibition depending on the state of differentiation. Interestingly, we found that some drugs that are known to inhibit NF-kappaB in immune cells were not effective in muscle cells. Drug toxicity was assessed for using an MTT cell viability assay, and the validity of the luciferase assay was verified by immunostaining for NF-kappaB nuclear translocation in myoblasts. In conclusion, we have determined the optimal assay conditions for detecting potentially valuable NF-kappaB inhibitors for the first time in a muscle cell line that may have significant therapeutic potential for inflammatory muscle diseases.


Assuntos
Inibidores Enzimáticos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Miosite/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Animais , Linhagem Celular , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Camundongos , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miosite/imunologia , Miosite/patologia , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA