Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 14(11): e0224864, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31697768

RESUMO

With changes in ice cover duration, nutrient loading, and anoxia risk, it is important to understand the mechanisms that control nitrogen cycling and oxygen depletion in lakes through winter. Current understanding is largely limited to description of changes in chemistry, with few measurements of the processes driving winter changes, how they differ across lakes, and how they are impacted by under-ice conditions. Nitrification is a process which consumes oxygen and ammonium (NH4+), and supplies nitrate (NO3-). To date, nitrification has been measured under ice cover in only two lakes globally. Here, we used 15NH4+ enrichment to measure rates of pelagic nitrification in thirteen water bodies in two ecozones. Our work demonstrates ecologically important rates of nitrification can occur despite low water temperatures, impacting NH4+, NO3- and, most importantly, oxygen concentrations. However, high rates are not the norm. When, where and why is nitrification important in winter? We found that nitrification rates were highest in a eutrophic lake chain downstream of a wastewater treatment effluent (mean: 226.5 µg N L-1 d-1), and in a semi-saline prairie lake (110.0 µg N L-1 d-1). In the boreal shield, a eutrophic lake had nitrification rates exceeding those of an oligotrophic lake by 6-fold. Supplementing our results with literature data we found NH4+ concentrations were the strongest predictor of nitrification rates across lentic ecosystems in winter. Higher nitrification rates were associated with higher concentrations of NH4+, NO3- and nitrous oxide (N2O). While more work is required to understand the switch between high and low nitrification rates and strengthen our understanding of winter nitrogen cycling, this work demonstrates that high nitrification rates can occur in winter.


Assuntos
Camada de Gelo , Lagos , Nitrificação , Estações do Ano , Compostos de Amônio/análise , Canadá , Geografia , Modelos Lineares , Nitratos/análise , Ciclo do Nitrogênio , Óxido Nitroso/análise , Análise de Componente Principal
2.
J Environ Qual ; 48(4): 792-802, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31589688

RESUMO

Cold agricultural regions are important sites of global food production. This has contributed to widespread water quality degradation influenced by processes and hydrologic pathways that differ from warm region analogues. In cold regions, snowmelt is often a dominant period of nutrient loss. Freeze-thaw processes contribute to nutrient mobilization. Frozen ground can limit infiltration and interaction with soils, and minimal nutrient uptake during the nongrowing season may govern nutrient export from agricultural catchments. This paper reviews agronomic, biogeochemical, and hydrological characteristics of cold agricultural regions and synthesizes findings of 23 studies that are published in this special section, which provide new insights into nutrient cycling and hydrochemical processes, model developments, and the efficacy of different potentially beneficial management practices (BMPs) across varied cold regions. Growing evidence suggests the need to redefine optimum soil phosphorus levels and input regimes in cold regions to allow achievement of water quality targets while still supporting strong agricultural productivity. Practices should be considered through a regional and site-specific lens, due to potential interactions between climate, hydrology, vegetation, and soils, which influence the efficacy of nutrient, crop, water, and riparian buffer management. This leads to differing suitability of BMPs across varied cold agricultural regions. We propose a systematic approach (""), to achieve water quality objectives in variable and changing climates, which combines nutrient transport process onceptualization, nderstanding BMP functions, redicting effects of variability and change, onsideration of producer input and agronomic and environmental tradeoffs, practice daptation, nowledge mobilization, and valuation of water quality improvement.


Assuntos
Clima Frio , Qualidade da Água , Agricultura , Fósforo , Solo
3.
J Environ Qual ; 48(4): 803-812, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31589694

RESUMO

Managing P export from agricultural land is critical to address freshwater eutrophication. However, soil P management, and options to draw down soil P have received little attention in snowmelt-dominated regions because of limited interaction between soil and snowmelt. Here, we assessed the impacts of soil P drawdown (reducing fertilizer P inputs combined with harvest removal) on soil Olsen P dynamics, runoff P concentrations, and crop yields from 1997 to 2014 in paired fields in Manitoba, Canada. We observed that Olsen P concentrations in the 0- to 5-cm soil layer were negatively correlated with the cumulative P depletion and declined rapidly at the onset of the drawdown practice (3.1 to 5.4 mg kg yr during 2007-2010). In both snowmelt runoff and rainfall runoff, concentrations of total dissolved P (TDP) were positively correlated with the concentrations of soil Olsen P. Soil P drawdown to low to moderate fertility levels significantly decreased mean annual flow-weighted TDP concentrations in snowmelt runoff from 0.60 to 0.30 mg L in the field with high initial soil P and from 1.17 to 0.42 mg L in the field with very high initial soil P. Declines in TDP concentration in rainfall runoff were greater. Critically, yields of wheat ( spp.) and canola ( L.) were not affected by soil P depletion. In conclusion, we demonstrate that relatively rapid reductions in P loads are achievable at the field scale via managing P inputs and soil P pools, highlighting a management opportunity that can maintain food security while improving water security in cold regions.


Assuntos
Fósforo , Solo , Canadá , Chuva , Movimentos da Água , Qualidade da Água
4.
J Environ Qual ; 48(4): 850-868, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31589697

RESUMO

The use of cover crops and crop residues is a common strategy to mitigate sediment and nutrient losses from land to water. In cold climates, elevated dissolved P losses can occur associated with freeze-thaw of plant materials. Here, we review the impacts of cover crops and crop residues on dissolved P and total P loss in cold climates across ∼41 studies, exploring linkages between water-extractable P (WEP) in plant materials and P loss in surface runoff and subsurface drainage. Water-extractable P concentrations are influenced by plant type and freezing regimes. For example, WEP was greater in brassica cover crops than in non-brassicas, and increased with repeated freeze-thaw cycles. However, total P losses in surface runoff and subsurface drainage from cropped fields under cold climates were much lower than plant WEP, owing to retention of 45 to >99% of released P by soil. In cold climatic regions, cover crops and crop residues generally prevented soil erosion and loss of particle-bound P during nongrowing seasons in erodible landscapes but tended to elevate dissolved P loss in nonerodible soils. Their impact on total P loss was inconsistent across studies and complicated by soil, climate, and management factors. More research is needed to understand interactions between these factors and plant type that influence P loss, and to improve the assessment of crop contributions to P loss in field settings in cold climates. Further, tradeoffs between P loss and the control of sediment loss and N leaching by plants should be acknowledged.


Assuntos
Clima Frio , Fósforo , Agricultura , Produtos Agrícolas , Solo , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA