Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Dairy Sci ; 101(4): 3118-3125, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29428766

RESUMO

Fat is the most variable milk component, and maintaining milk fat continues to be a challenge on commercial dairy farms. Our objectives were to establish associations between herd-level risk factors for milk fat depression and bulk tank milk fat content in commercial dairy herds feeding monensin. Seventy-nine Holstein commercial dairy herds in the northeast and Upper Midwest United States were enrolled in an observational study. Data were collected on herd characteristics, total mixed ration (TMR) samples, all component silage samples, and bulk tank milk samples. The unconditional univariable association of each explanatory variable and bulk tank milk fat percentage was evaluated using simple linear regression and multivariable regression models. Milk fat content of trans-10 C18:1 had an exponentially negative relationship to herd milk fat percentage. In general, milk fat content of fatty acids synthesized de novo in the mammary gland were positively related to herd milk fat, and the content of several trans-C18:1 fatty acids, which would be products of alternate pathways of ruminal biohydrogenation, were negatively related to herd milk fat. Variables related to TMR composition did not have univariable relationships with herd milk fat percentage. Herds that had >49.8% of the TMR particles on the middle screen of the Penn State particle separator had higher milk fat percentage than those with ≤49.8%, and herds with >54.0% of TMR particles in the bottom pan had lower milk fat percentage than herds with ≤54.0%. Dietary content of monounsaturated fatty acids (C16:1 and C18:1) had negative relationships with herd milk fat percentage; however, no single diet component accounted for more than 11% of the variation in herd-level milk fat percentage. Univariable monensin dose was not associated with herd milk fat percentage. The relative lack of significant univariate relationships with herd-level milk fat suggests many factors contribute to milk fat content, and herds experiencing low milk fat will need to examine many potential risk factors when working to troubleshoot this challenge.


Assuntos
Bovinos/fisiologia , Ácidos Graxos/metabolismo , Leite/química , Monensin/farmacologia , Ionóforos de Próton/farmacologia , Animais , Estudos Transversais , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Silagem/análise , Estados Unidos
2.
J Dairy Sci ; 96(6): 3825-34, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23587385

RESUMO

Conjugated linoleic acids (CLA) are produced during rumen biohydrogenation and exert a range of biological effects. The trans-10,cis-12 CLA isomer is a potent inhibitor of milk fat synthesis in lactating dairy cows and some aspects of the mechanism have been established. Conjugated linoleic acid-induced milk fat depression has also been observed in small ruminants and our objective was to examine the molecular mechanism in lactating ewes. Multiparous lactating ewes were fed a basal ration (0.55:0.45 concentrate-to-forage ratio; dry matter basis) and randomly allocated to 2 dietary CLA levels (n=8 ewes/treatment). Treatments were zero CLA (control) or 15 g/d of lipid-encapsulated CLA supplement containing cis-9,trans-11 and trans-10,cis-12 CLA isomers in equal proportions. Treatments were fed for 10 wk and the CLA supplement provided 1.5 g of trans-10,cis-12/d. No treatment effects were observed on milk yield or milk composition for protein or lactose at wk 10 of the study. In contrast, CLA treatment significantly decreased both milk fat percentage and milk fat yield (g/d) by about 23%. The de novo synthesized fatty acids (FA; C16) was increased (10%) for the CLA treatment. In agreement with the reduced de novo FA synthesis, mRNA abundance of acetyl-coenzyme A carboxylase α, FA synthase, stearoyl-CoA desaturase 1, and glycerol-3-phosphate acyltransferase 6 decreased by 25 to 40% in the CLA-treated group. Conjugated linoleic acid treatment did not significantly reduce the mRNA abundance of enzymes involved in NADPH production, but the mRNA abundance for sterol regulatory element-binding factor 1 and insulin-induced gene 1, genes involved in regulation of transcription of lipogenic enzymes, was decreased by almost 30 and 55%, respectively, with CLA treatment. Furthermore, mRNA abundance of lipoprotein lipase decreased by almost 40% due to CLA treatment. In conclusion, the mechanism for CLA-induced milk fat depression in lactating ewes involved the sterol regulatory element-binding protein transcription factor family and a coordinated downregulation in transcript abundance for lipogenic enzymes involved in mammary lipid synthesis.


Assuntos
Gorduras/análise , Ácidos Linoleicos Conjugados/farmacologia , Lipogênese/genética , Glândulas Mamárias Animais/metabolismo , Leite/química , Ovinos/fisiologia , Animais , Dieta/veterinária , Feminino , Expressão Gênica/efeitos dos fármacos , Lactação , Ácidos Linoleicos Conjugados/administração & dosagem , Lipídeos/biossíntese , Lipase Lipoproteica/genética , Proteínas do Leite/análise , Reação em Cadeia da Polimerase/veterinária , Distribuição Aleatória , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
3.
J Dairy Sci ; 95(12): 7299-307, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23063161

RESUMO

Conjugated linoleic acid (CLA; cis-9,trans-11 18:2), a bioactive fatty acid (FA) found in milk and dairy products, has potential human health benefits due to its anticarcinogenic and antiatherogenic properties. Conjugated linoleic acid concentrations in milk fat can be markedly increased by dietary manipulation; however, high levels of CLA are difficult to sustain as rumen biohydrogenation shifts and milk fat depression (MFD) is often induced. Our objective was to feed a typical Northeastern corn-based diet and investigate whether vitamin E and soybean oil supplementation would sustain an enhanced milk fat CLA content while avoiding MFD. Holstein cows (n=48) were assigned to a completely randomized block design with repeated measures for 28 d and received 1 of 4 dietary treatments: (1) control (CON), (2) 10,000 IU of vitamin E/d (VE), (3) 2.5% soybean oil (SO), and (4) 2.5% soybean oil plus 10,000 IU of vitamin E/d (SO-VE). A 2-wk pretreatment control diet served as the covariate. Milk fat percentage was reduced by both high-oil diets (3.53, 3.56, 2.94, and 2.92% for CON, VE, SO, and SO-VE), whereas milk yield increased significantly for the SO-VE diet only, thus partially mitigating MFD by oil feeding. Milk protein percentage was higher for cows fed the SO diet (3.04, 3.05, 3.28, and 3.03% for CON, VE, SO, and SO-VE), implying that nutrient partitioning or ruminal supply of microbial protein was altered in response to the reduction in milk fat. Milk fat concentration of CLA more than doubled in cows fed the diets supplemented with soybean oil, with concurrent increases in trans-10 18:1 and trans-11 18:1 FA. Moreover, milk fat from cows fed the 2 soybean oil diets had 39.1% less de novo synthesized FA and 33.8% more long-chain preformed FA, and vitamin E had no effect on milk fat composition. Overall, dietary supplements of soybean oil caused a reduction in milk fat percentage and a shift in FA composition characteristic of MFD. Supplementing diets with vitamin E did not overcome the oil-induced reduction in milk fat percentage or changes in FA profile, but partially mitigated the reduction in fat yield by increasing milk yield.


Assuntos
Suplementos Nutricionais , Ácido Linoleico/farmacologia , Ácidos Linoleicos Conjugados/análise , Leite/química , Vitamina E/farmacologia , Vitaminas/farmacologia , Animais , Bovinos , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Feminino , Ácidos Linoleicos Conjugados/metabolismo , Fatores de Tempo
4.
J Dairy Sci ; 95(3): 1437-46, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22365226

RESUMO

Feeding conjugated linoleic acid (CLA) in a rumen-inert form to dairy ewes has been shown to increase milk production, alter milk composition, and increase the milk fat CLA content. However, few studies have tested ruminally unprotected CLA sources. The objective of this study was to evaluate the effects of an unprotected CLA supplement (29.8% of cis-9,trans-11 and 29.9% of trans-10,cis-12 isomers as methyl esters) on milk yield and composition of dairy ewes. Twenty-four lactating Lacaune ewes were used in a crossover design and received 2 dietary treatments: (1) control: basal diet containing no supplemental lipid and (2) basal diet plus CLA (30 g/d). The CLA supplement was mixed into the concentrate and fed in 2 equal meals after morning and afternoon milkings. Each experimental period consisted of 21 d: 7 d for adaptation and 14 d for data collection. The CLA supplement decreased milk fat content and yield by 31.3 and 38.0%, respectively. Milk yield and secretion of milk lactose and protein were decreased by 8.0, 9.8, and 5.6%, respectively. On the other hand, milk protein content and linear SCC score were 1.8 and 17.7% higher in ewes fed the CLA supplement. The concentration of milk fatty acids originating from de novo synthesis (C16) was increased by 22.6% in ewes fed the CLA supplement. The CLA supplement decreased C14:1/C14:0, C16:1/C16:0, and C18:1/C18:0 desaturase indexes by 25, 18.7, and 0.1%, respectively, but increased the cis-9,trans-11 CLA/trans-11 C18:1 ratio by 8.6%. The concentrations of trans-10,cis-12 CLA and cis-9,trans-11 CLA in milk fat was 309 and 33.4% higher in ewes fed CLA. Pronounced milk fat depression coupled with the deleterious effects on milk yield, milk SCC, and secretion of all milk solids observed in ewes fed an unprotected CLA supplement is likely to be associated with high doses of trans-10,cis-12 CLA reaching the mammary gland, corroborating previous results obtained with dairy cows.


Assuntos
Suplementos Nutricionais/efeitos adversos , Lactação/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Leite/metabolismo , Animais , Dieta/veterinária , Ácidos Graxos/análise , Feminino , Lactose/análise , Leite/química , Proteínas do Leite/análise , Ovinos
5.
J Dairy Sci ; 95(1): 109-16, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22192190

RESUMO

Trans-10,cis-12 conjugated linoleic acid (CLA) inhibits milk fat synthesis in dairy ewes, but the effects under varying dietary metabolizable protein (MP) levels when energy-limited diets are fed have not been examined. The objectives of the study were to evaluate the response of lactating dairy ewes to CLA supplementation when fed diets limited in metabolizable energy (ME) and with either a low or high MP content. Twelve multiparous ewes in early lactation were randomly allocated to 1 of 4 dietary treatments: a high MP (110% of daily MP requirement) or low MP (93% of daily MP requirement) diet unsupplemented or supplemented with a lipid-encapsulated CLA to provide 2.4 g/d of trans-10,cis-12 CLA, in each of 4 periods of 25 d each in a 4×4 Latin square design. All diets were restricted to supply each ewe with 4.6 Mcal of ME/d (equivalent to 75% of ME requirement). Supplementation with CLA decreased milk fat percentage and yield by 33% and 24%, respectively, and increased milk, milk protein, and lactose yields by 16, 13, and 17%, respectively. Feeding the high MP diet increased the yields of milk, fat, protein, and lactose by 18, 15, 19, and 16%, respectively. Milk fat content of trans-10,cis-12 CLA (g/100g) was 0.09 and <0.01 for the CLA-supplemented and unsupplemented ewes, respectively. Ewes supplemented with CLA had a reduced yield (mmol/d) of fatty acids of C16, although the effect was greatest for C16. Plasma urea concentrations were lowest in ewes supplemented with CLA compared with those unsupplemented (6.5 vs. 7.4 mmol/L, respectively) and receiving low compared with high MP diets (5.6 vs. 8.3 mmol/L, respectively). In conclusion, dairy ewes fed energy-limited diets and supplemented with CLA repartitioned nutrients to increase yields of milk, protein, and lactose, with the response to CLA supplementation and additional MP intake being additive.


Assuntos
Proteínas Alimentares/farmacologia , Suplementos Nutricionais , Ingestão de Energia/fisiologia , Lactação/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Ovinos/fisiologia , Animais , Dieta/veterinária , Proteínas Alimentares/metabolismo , Ácidos Graxos/análise , Feminino , Lipídeos/análise , Leite/química , Proteínas do Leite/análise , Ovinos/metabolismo , Ureia/sangue
6.
J Dairy Sci ; 94(1): 59-65, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21183017

RESUMO

Consumers are increasingly aware that food components have the potential to influence human health maintenance and disease prevention, and dietary fatty acids (FA) have been of special interest. It has been 25 years since the last survey of US milk FA composition, and during this interval substantial changes in dairy rations have occurred, including increased use of total mixed rations and byproduct feeds as well as the routine use of lipid and FA supplements. Furthermore, analytical procedures have improved allowing greater detail in the routine analysis of FA, especially trans FA. Our objective was to survey US milk fat and determine its FA composition. We obtained samples of fluid milk from 56 milk processing plants across the US every 3 mo for one year to capture seasonal and geographical variations. Processing plants were selected based on the criteria that they represented 50% or more of the fluid milk produced in that area. An overall summary of the milk fat analysis indicated that saturated fatty acids comprised 63.7% of total milk FA with palmitic and stearic acids representing the majority (44.1 and 18.3% of total saturated fatty acids, respectively). Unsaturated fatty acids were 33.2% of total milk FA with oleic acid predominating (71.0% of total unsaturated fatty acids). These values are comparable to those of the previous survey in 1984, considering differences in analytical techniques. Trans FA represented 3.2% of total FA, with vaccenic acid being the major trans isomer (46.5% of total trans FA). Cis-9, trans-11 18:2 conjugated linoleic acid represented 0.55% total milk FA, and the major n-3 FA (linolenic acid, 18:3) composed 0.38%. Analyses for seasonal and regional effects indicated statistical differences for some FA, but these were minor from an overall human nutrition perspective as the FA profile for all samples were numerically similar. Overall, the present study provides a valuable database for current FA composition of US fluid milk, and results demonstrate that the milk fatty acid profile is remarkably consistent across geographic regions and seasons from the perspective of human dietary intake of milk fat.


Assuntos
Ácidos Graxos/análise , Leite/química , Animais , Estações do Ano , Estados Unidos
7.
J Dairy Sci ; 93(5): 1918-25, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20412905

RESUMO

Consumers are becoming increasingly health conscious, and food product choices have expanded. Choices in the dairy case include fluid milk labeled according to production management practices. Such labeling practices may be misunderstood and perceived by consumers to reflect differences in the quality or nutritional content of milk. Our objective was to investigate nutritional differences in specialty labeled milk, specifically to compare the fatty acid (FA) composition of conventional milk with milk labeled as recombinant bST (rbST)-free or organic. The retail milk samples (n=292) obtained from the 48 contiguous states of the United States represented the consumer supply of pasteurized, homogenized milk of 3 milk types: conventionally produced milk with no specialty labeling, milk labeled rbST-free, and milk labeled organic. We found no statistical differences in the FA composition of conventional and rbST-free milk; however, these 2 groups were statistically different from organic milk for several FA. When measuring FA as a percentage of total FA, organic milk was higher in saturated FA (65.9 vs. 62.8%) and lower in monounsaturated FA (26.8 vs. 29.7%) and polyunsaturated FA (4.3 vs. 4.8%) compared with the average of conventional and rbST-free retail milk samples. Likewise, among bioactive FA compared as a percentage of total FA, organic milk was slightly lower in trans 18:1 FA (2.8 vs. 3.1%) and higher in n-3 FA (0.82 vs. 0.50%) and conjugated linoleic acid (0.70 vs. 0.57%). From a public health perspective, the direction for some of these differences would be considered desirable and for others would be considered undesirable; however, without exception, the magnitudes of the differences in milk FA composition among milk label types were minor and of no physiological importance when considering public health or dietary recommendations. Overall, when data from our analysis of FA composition of conventional milk and milk labeled rbST-free or organic were combined with previous analytical comparisons of the quality and composition of these retail milk samples, results established that there were no meaningful differences that would affect public health and that all milks were similar in nutritional quality and wholesomeness.


Assuntos
Indústria de Laticínios/métodos , Ácidos Graxos/análise , Rotulagem de Alimentos/normas , Leite/química , Animais , Indústria de Laticínios/normas , Alimentos Orgânicos/análise , Alimentos Orgânicos/normas
8.
J Dairy Sci ; 93(3): 1126-37, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20172234

RESUMO

Conjugated linoleic acids (CLA) are potent anticarcinogens in animal and in vitro models as well as inhibitors of fatty acid synthesis in mammary gland, liver, and adipose tissue. Our objective was to evaluate long-term CLA supplementation of lactating dairy cows in tropical pasture on milk production and composition and residual effects posttreatment. Thirty crossbred cows grazing stargrass (Cynodon nlemfuensis Vanderyst var. nlemfüensis) were blocked by parity and received 150 g/d of a dietary fat supplement of either Ca-salts of palm oil fatty acids (control) or a mixture of Ca-salts of CLA (CLA treatment). Supplements of fatty acids were mixed with 4 kg/d of concentrate. Grazing plus supplements were estimated to provide 115% of the estimated metabolizable protein requirements from 28 to 84 d in milk (treatment period). The CLA supplement provided 15 g/d of cis-9,trans-11 and 22g of cis-10,trans-12. Residual effects were evaluated from 85 to 112 d in milk (residual period) when cows were fed an 18% crude protein concentrate without added fat. The CLA treatment increased milk production but reduced milk fat concentration from 2.90 to 2.14% and fat production from 437 to 348 g/d. Milk protein concentration increased by 11.5% (2.79 to 3.11%) and production by 19% (422 to 504 g/d) in the cows fed CLA. The CLA treatment decreased milk energy concentration and increased milk volume, resulting in unchanged energy output. Milk production and protein concentration and production were also greater during the residual period for the CLA-treated cows. The CLA treatment reduced production of fatty acids (FA) of all chain lengths, but the larger effect was on short-chain FA, causing a shift toward a greater content of longer chain FA. The CLA treatment increased total milk CLA content by 30% and content of the trans-10,cis-12 CLA isomer by 88%. The CLA treatment tended to decrease the number of days open, suggesting a possible effect on reproduction. Under tropical grazing conditions, in a nutritionally challenging environment, CLA-treated cows decreased milk fat content and secreted the same amount of milk energy by increasing milk volume and milk protein production.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Gorduras na Dieta/administração & dosagem , Suplementos Nutricionais , Lactação/fisiologia , Ácidos Linoleicos Conjugados/administração & dosagem , Leite , Animais , Gorduras/análise , Ácidos Graxos/análise , Ácidos Graxos não Esterificados/sangue , Feminino , Leite/química , Leite/metabolismo , Proteínas do Leite/análise , Reprodução/fisiologia , Rúmen/metabolismo , Fatores de Tempo , Clima Tropical
9.
J Dairy Sci ; 93(1): 32-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20059901

RESUMO

Very long chain n-3 fatty acids such as eicosapentaenoic acid (EPA; 20:5n-3) are important in human cardiac health and the prevention of chronic diseases, but food sources are limited. Stearidonic acid (SDA; 18:4n-3) is an n-3 fatty acid that humans are able to convert to EPA. In utilizing SDA-enhanced soybean oil (SBO) derived from genetically modified soybeans, our objectives were to examine the potential to increase the n-3 fatty acid content of milk fat and to determine the efficiency of SDA uptake from the digestive tract and transfer to milk fat. Three multiparous, rumen-fistulated Holstein cows were assigned randomly in a 3 x 3 Latin square design to the following treatments: 1) control (no oil infusion); 2) abomasal infusion of SDA-enhanced SBO (SDA-abo); and 3) ruminal infusion of SDA-enhanced SBO (SDA-rum). The SDA-enhanced SBO contained 27.1% SDA, 10.4% alpha-linolenic acid, and 7.2% gamma-linolenic acid. Oil infusions provided 57 g/d of SDA with equal amounts of oil infused into either the rumen or abomasum at 6-h intervals over a 7-d infusion period. Cow numbers were limited and no treatment differences were detected for DMI or milk production (22.9+/-0.5 kg/d and 32.3+/-0.9 kg/d, respectively; least squares means +/- SE), milk protein percentage and yield (3.24+/-0.04% and 1.03+/-0.02 kg/d), or lactose percentage and yield (4.88+/-0.05% and 1.55+/-0.05 kg/d). Treatment also had no effect on milk fat yield (1.36+/-0.03 kg/d), but milk fat percentage was lower for the SDA-rum treatment (4.04+/-0.04% vs. 4.30+/-0.04% for control and 4.41+/-0.05% for SDA-abo). The SDA-abo treatment increased n-3 fatty acids to 3.9% of total milk fatty acids, a value more than 5-fold greater than that for the control. Expressed as a percentage of total milk fatty acids, values (least squares means +/- SE) for the SDA-abo treatment were 1.55+/-0.03% for alpha-linolenic acid (18:3n-3), 1.86+/-0.02 for SDA, 0.23 +/- <0.01 for eicosatetraenoic acid (20:4n-3), and 0.18+/-0.01 for EPA. Transfer efficiency of SDA to milk fat represented 39.3% (range=36.8 to 41.9%) of the abomasally infused SDA and 47.3% (range=45.0 to 49.6%) when the n-3 fatty acids downstream from SDA were included. In contrast, transfer of ruminally infused SDA to milk fat averaged only 1.7% (range=1.3 to 2.1%), indicating extensive rumen biohydrogenation. Overall, results demonstrate the potential to use SDA-enhanced SBO from genetically modified soybeans combined with proper ruminal protection to achieve impressive increases in the milk fat content of SDA and other n-3 fatty acids that are beneficial for human health.


Assuntos
Indústria de Laticínios/métodos , Gorduras/química , Ácidos Graxos Ômega-3/análise , Leite/química , Plantas Geneticamente Modificadas/química , Óleo de Soja/administração & dosagem , Animais , Bovinos , Ácidos Graxos Ômega-3/metabolismo , Feminino , Gravidez , Distribuição Aleatória
10.
J Dairy Sci ; 92(6): 2534-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19447985

RESUMO

Dietary supplements of conjugated linoleic acid (CLA) containing trans-10, cis-12 CLA reduce milk fat synthesis in lactating goats. This study investigated effects of milk fat depression induced by dietary CLA supplements on the properties of semi-hard goat cheese. Thirty Alpine does were randomly assigned to 1 of 3 groups and fed diets with lipid-encapsulated CLA that provided trans-10, cis-12 CLA at 0 (control), 3 (CLA-1), and 6 g/d (CLA-2). The experiment was a 3 x 3 Latin square design. Periods were 2 wk in length, each separated by 2-wk periods without CLA supplements. Bulk milk was collected on d 3 and 13 of each of 3 periods for cheese manufacture. The largest decrease (23.2%) in milk fat content, induced by the high dosage (6 g/d per doe) of trans-10, cis-12 CLA supplementation at d 13 of treatment, resulted in decreases of cheese yield and moisture of 10.2 and 10.0%, respectively. Although CLA supplementation increased the hardness, springiness, and chewiness, and decreased the cohesiveness and adhesiveness of cheeses, no obvious defects were detected and no significant differences were found in sensory scores among cheeses. In conclusion, milk fat depression induced by a dietary CLA supplement containing trans-10, cis-12 CLA resulted in changes of fat-to-protein ratio in cheese milk and consequently affected properties of semi-hard goat cheese.


Assuntos
Queijo/análise , Queijo/normas , Suplementos Nutricionais , Gorduras/análise , Ácidos Linoleicos Conjugados/administração & dosagem , Leite/química , Animais , Indústria de Laticínios , Cabras , Humanos , Lactação , Sensação
11.
J Dairy Sci ; 92(6): 2662-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19447999

RESUMO

The feeding of conjugated linoleic acid (CLA) supplements to early-lactation dairy cows has been shown to decrease milk fat synthesis and possibly improve reproductive performance. However, previously reported studies used too few animals to clearly establish the effect of CLA on reproduction. Our objective was to combine data from these studies to evaluate the association of CLA with time to first ovulation and time to conception using methods of survival analysis and overall success of pregnancy by logistic regression. A database was compiled of individual animal data (n = 212) from 5 controlled studies in which CLA had been supplemented to early-lactation dairy cows. Survival analysis incorporated both semi-parametric models (Cox proportional hazards) and parametric models (log-normal). The probability of cows becoming pregnant increased in a nonlinear manner as trans-10, cis-12 CLA dose increased, with the optimal dose predicted to be 10.1 g/d. At the optimal dose, the probability of pregnancy was increased by 26% compared with those animals receiving no CLA (probability = 91% and 72%, respectively). Similarly, the log-normal model predicted that time to conception was decreased in a nonlinear manner with increasing trans-10, cis-12 CLA dose. The predicted optimal dose was 10.5 g of trans-10, cis-12 CLA/d and at this dose the median time to conception was decreased by 34 d when compared with those cows not receiving CLA (117 vs. 151 d in milk, respectively). The log-normal model was also the best-fit model for time to first ovulation. Overall, this multi-study analysis demonstrated a strong concordance between the nature of the dose response and the predicted optimal dose of trans-10, cis-12 CLA across the 3 reproductive variables evaluated. These results indicate that reproductive performance of dairy cows may be improved by feeding of CLA supplements during early lactation.


Assuntos
Bovinos/fisiologia , Suplementos Nutricionais , Lactação/fisiologia , Ácidos Linoleicos Conjugados/administração & dosagem , Reprodução/fisiologia , Animais , Feminino , Modelos Logísticos , Gravidez , Análise de Sobrevida
12.
J Dairy Sci ; 91(9): 3291-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18765588

RESUMO

The effect of conjugated linoleic acid (CLA) supplements containing trans-10, cis-12 for reducing milk fat synthesis has been well described in dairy cows and sheep. Studies on lactating goats, however, remain inconclusive. Therefore, the current study investigated the efficacy of a lipid-encapsulated trans-10, cis-12 CLA supplement (LE-CLA) on milk production and milk fatty acid profile in dairy goats. Thirty multiparous Alpine lactating goats in late lactation were used in a 3 x 3 Latin square design (14-d treatment periods separated by 14-d intervals). Does were fed a total mixed ration of Bermuda grass hay, dehydrated alfalfa pellets, and concentrate. Does were randomly allocated to 3 treatments: A) unsupplemented (control), B) supplemented with 30 g/d of LE-CLA (low dose; CLA-1), and C) supplemented with 60 g/d of LE-CLA (high dose; CLA-2). Milk yield, dry matter intake, and milk protein content and yield were unaffected by treatment. Compared with the control, milk fat yield was reduced 8% by the CLA-1 treatment and 21% by the CLA-2 treatment, with milk fat content reduced 5 and 18% by the CLA-1 and CLA-2 treatments, respectively. The reduction in milk fat yield was due to decreases in both de novo fatty acid synthesis and uptake of preformed fatty acids. Milk fat content of trans-10, cis-12 CLA was 0.03, 0.09, and 0.19 g/100 g of fatty acids for the control, CLA-1, and CLA-2 treatments, respectively. The transfer efficiency of trans-10, cis-12 CLA from the 2 levels of CLA supplement into milk fat was not different between treatments and averaged 1.85%. In conclusion, trans-10, cis-12 CLA reduced milk fat synthesis in lactating dairy goats in a manner similar to that observed for lactating dairy cows and dairy sheep. Dose-response comparisons, however, suggest that the degree of reduction in milk fat synthesis is less in dairy goats compared with dairy cows and dairy sheep.


Assuntos
Suplementos Nutricionais , Lactação/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Lipídeos/biossíntese , Leite/química , Animais , Gorduras/análise , Ácidos Graxos/análise , Feminino , Cabras , Lactose/análise , Ácidos Linoleicos Conjugados/administração & dosagem , Proteínas do Leite/análise , Distribuição Aleatória , Fatores de Tempo
13.
J Dairy Sci ; 90(9): 4149-56, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17699033

RESUMO

Enrichment of milk fat with n-3 fatty acids, in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may be advantageous because of their beneficial effects on human health. In addition, these fatty acids play an important role in reproductive processes in dairy cows. Our objective was to evaluate the protection of EPA and DHA against rumen biohydrogenation provided by Ca salts of fish oil. Four Holstein cows were assigned in a Latin square design to the following treatments: 1) ruminal infusion of Ca salts of fish oil and palm fatty acid distillate low dose (CaFO-1), 2) ruminal infusion of Ca salts of fish oil and palm fatty acid distillate high dose (CaFO-2), 3) ruminal infusion of fish oil high dose (RFO), and 4) abomasal infusion of fish oil high dose (AFO). The high dose of fish oil provided approximately 16 and approximately 21 g/d of EPA and DHA, respectively, whereas the low dose (CaFO-1) provided 50% of these amounts. A 10-d pretreatment period was used as a baseline, followed by 9-d treatment periods with interceding intervals of 10 d. Supplements were infused every 6 h, milk samples were taken the last 3 d, and plasma samples were collected the last day of baseline and treatment periods. Milk fat content of EPA and DHA were 5 to 6 times greater with AFO, but did not differ among other treatments. Milk and milk protein yield were unaffected by treatment, but milk fat yield and DM intake were reduced by 20 and 15%, respectively, by RFO. Overall, results indicate rumen biohydrogenation of long chain n-3 fatty acids was extensive, averaging >85% for EPA and >75% for DHA for the Ca salts and unprotected fish oil supplements. Thus, Ca salts of fish oil offered no protection against the biohydrogenation of EPA and DHA beyond that observed with unprotected fish oil; however, the Ca salts did provide rumen inertness by preventing the negative effects on DM intake and milk fat yield observed with unprotected fish oil.


Assuntos
Compostos de Cálcio/administração & dosagem , Gorduras Insaturadas na Dieta/administração & dosagem , Gorduras/análise , Ácidos Graxos Ômega-3/análise , Óleos de Peixe/administração & dosagem , Leite/química , Abomaso/efeitos dos fármacos , Animais , Bovinos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Feminino , Lactação , Proteínas do Leite/análise
14.
J Dairy Sci ; 90(9): 4253-64, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17699044

RESUMO

The objective of this study was to evaluate the mechanism of action through which conjugated linoleic acid (CLA) beneficially affects reproduction. Lactating Holstein cows (n = 45, 20 +/- 1 DIM) were assigned to 1 of 3 treatments: 70 g/d of Ca salts of tallow (control); 63 g/d of lipid-encapsulated CLA providing 7.1 g/d of cis-9, trans-11 CLA and 2.4 g/d of trans-10, cis-12 CLA (CLA 75:25); or 76 g/d of lipid-encapsulated CLA providing 7.1 g/d each of cis-9, trans-11 and trans-10, cis-12 CLA (CLA 50:50). Supplements were top-dressed for 37 d, milk production and DMI were recorded daily, and blood samples were taken 3 times per week. At 30 +/- 3 DIM, ovulation was synchronized in all cows with a modified Ovsynch protocol, and on d 15 of the cycle cows received an oxytocin injection; blood samples were obtained frequently to measure 13,14 dihydro, 15-keto PGF2alpha. On d 16 of the cycle cows received a PGF2alpha injection and ovarian follicular aspiration was performed 54 h later. Follicular fluid was analyzed for fatty acids, progesterone, and estradiol. Endometrial biopsies were taken before and again near the end of the supplementation period for fatty acid analysis. The CLA resulted in decreased milk fat content of 14.1 and 6.1% at wk 5 of treatment of CLA 50:50 and CLA 75:25, respectively. There were no differences in energy balance or plasma nonesterified fatty acids; however, plasma IGF-I was greater in cows supplemented with CLA 50:50. The CLA isomers were not detectable in endometrial tissue, but cis-9, trans-11 CLA tended to be greater in follicular fluid of supplemented cows. Response to the oxytocin challenge was not different among treatments. Progesterone during the early luteal phase and the estradiol:progesterone ratio in follicular fluid tended to be greater in cows supplemented with CLA 50:50. Overall, these results indicate that short periods of CLA supplementation do not alter uterine secretion of PGF2alpha. The mechanism through which CLA affects reproduction may involve improved ovarian follicular steroidogenesis and increased circulating concentrations of IGF-I.


Assuntos
Bovinos/fisiologia , Ácidos Linoleicos Conjugados/farmacologia , Reprodução/efeitos dos fármacos , Animais , Cálcio/administração & dosagem , Dinoprosta/administração & dosagem , Ingestão de Alimentos , Estradiol/análise , Gorduras/administração & dosagem , Ácidos Graxos/análise , Feminino , Líquido Folicular/química , Fator de Crescimento Insulin-Like I/análise , Lactação , Leite/química , Indução da Ovulação/veterinária , Ocitocina/administração & dosagem , Gravidez , Progesterona/análise , Progesterona/sangue
15.
J Dairy Sci ; 90(7): 3326-35, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17582118

RESUMO

Trans-10, cis-12 conjugated linoleic acid (CLA) reduces milk fat synthesis in sheep in a manner similar to that seen in dairy cows, but its effects on cheese yield and flavor are unknown. Additionally, when dietary energy supply is restricted, CLA can increase milk and milk protein yield, which may alter cheese yield and eating quality. The objectives of the study were to examine the effects of supplementing ewe diets with a rumen-protected source of CLA at a high and low dietary energy intake on milk fat and protein synthesis and on cheese yield and eating quality. Sixteen multiparous ewes were randomly allocated to 1 of 4 dietary treatments: a high (6.7 Mcal of metabolizable energy/d) or low (5.0 Mcal of metabolizable energy/d) feeding level that was either unsupplemented or supplemented with 25 g/d of a lipid-encapsulated CLA (to provide 2.4 g/d of CLA) in each of 4 periods of 21 d duration in a 4 x 4 Latin square design. There was no effect of treatment on milk yield (g/d), but milk fat percentage and milk fat yield were reduced by 23 and 20%, respectively, in ewes supplemented with CLA. Milk fatty acid concentration (g/100 g) of chain length < C16 was decreased and > C16 was increased in milk and cheese following CLA supplementation, whereas decreasing the feeding level increased fatty acids > or = C16. Milk fat contents of CLA were 0.01 and 0.12 g/100 g of fatty acids for the unsupplemented and CLA-supplemented treatments, respectively, whereas cis-9, trans-11 CLA was unaffected by CLA supplementation. There was no main effect of treatment on cheese yield, which was 0.11 +/- 0.001 kg of cheese/kg of milk, but cheese yield was highest, at 0.12 +/- 0.001 kg/kg, when made from milk of ewes fed the high feeding level + unsupplemented treatment. Cheese made from the milk of ewes supplemented with CLA, compared with the unsupplemented diet, was rated (scale 0 to 10) higher in the creaminess (2.1 vs. 1.4; SEM 0.15) and less oily (0.8 vs. 1.3; SEM 0.17) attributes, and was preferred overall (4.5 vs. 3.9; SEM 0.21). Cheese produced from sheep on the high vs. low feed level was rated less yellow (2.8 vs. 4.2; SEM 0.11), less salty (1.9 vs. 2.3; SEM 0.15), and more sour (1.5 vs. 1.1; SEM 0.13). We concluded that the effect of feeding level on animal performance and cheese characteristics was small, whereas supplementing the diets of ewes with a ruminally protected CLA source reduced milk fat yield, did not affect cheese yield, and beneficially altered the flavor characteristics of the cheese.


Assuntos
Queijo , Suplementos Nutricionais , Ácidos Linoleicos Conjugados/administração & dosagem , Lipídeos/biossíntese , Leite/química , Ovinos/fisiologia , Ração Animal/análise , Animais , Queijo/análise , Dieta/veterinária , Gorduras/análise , Feminino , Leite/efeitos dos fármacos , Proteínas do Leite/análise , Distribuição Aleatória , Ovinos/metabolismo , Paladar
16.
J Dairy Sci ; 90(5): 2211-8, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17430919

RESUMO

Under certain dietary situations, rumen biohydrogenation results in the production of unique fatty acids that inhibit milk fat synthesis. The first of these to be identified was trans-10, cis-12 conjugated linoleic acid (CLA), but others are postulated to contribute to diet-induced milk fat depression (MFD). Our objective was to examine the potential role of trans-9, cis-11 CLA in the regulation of milk fat. In a preliminary study, we used gas-liquid and high-performance liquid chromatography techniques to examine milk fat samples from a diet-induced MFD study and found that an increase in trans-9, cis-11 CLA corresponded to the decrease in milk fat yield. We investigated this further using a CLA enrichment of 9, 11 isomers to examine the biological effect of trans-9, cis-11 CLA on milk fat synthesis. Four rumen-fistulated Holstein cows were randomly assigned in a 4 x 4 Latin square experiment involving 5-d treatment periods and abomasal infusion of 1) ethanol (control), 2) a 9, 11 CLA mix (containing 32% trans-9, cis-11, 29% cis-9, trans-11, and 17% trans-9, trans-11), 3) a trans-9, trans-11 CLA supplement, and 4) a trans-10, cis-12 CLA supplement (positive control). The trans-9, trans-11 CLA and trans-10, cis-12 CLA supplements were of high purity (>90%), and all supplements were infused at a rate to provide 5 g/d of the CLA isomer of interest. Milk yield and dry matter intake did not differ among treatments. Compared with the control treatment, milk fat yield was reduced by 15% for the 9, 11 CLA mixture and by 27% for the trans-10, cis-12 CLA treatment. We also found that trans-9, trans-11 CLA had no effect on milk fat yield, and previous research has shown that milk fat yield is unaltered when cows are infused with cis-9, trans-11 CLA. When all treatments were considered, results suggested that trans-9, cis-11 was the CLA isomer in the 9, 11 CLA mix responsible for the reduction in milk fat synthesis, although the magnitude was less than that observed for trans-10, cis-12 CLA. Interestingly, trans-9, trans-11 CLA altered the milk fat desaturase index, further demonstrating that alterations in desaturase can occur independently of effects on milk fat synthesis. Overall, our investigations identified that an increase in milk fat content of trans-9, cis-11 CLA was associated with diet-induced MFD and provided evidence of a role for this isomer in MFD based on the 15% reduction in milk fat yield with abomasal infusion of a CLA enrichment that supplied 5 g/d of trans-9, cis-11 CLA.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Gorduras/metabolismo , Lactação/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Ração Animal/análise , Animais , Cromatografia Líquida de Alta Pressão , Indústria de Laticínios , Ácidos Graxos/análise , Feminino , Ácidos Linoleicos Conjugados/administração & dosagem , Leite/química , Fatores de Tempo
17.
J Dairy Sci ; 90(2): 721-30, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17235149

RESUMO

Conjugated linoleic acid (CLA) reduces milk fat synthesis in grazing dairy cows and may improve calculated net energy balance (EBAL). Study objectives were to determine whether CLA-induced milk fat depression could be utilized during times of feed restriction to improve bioenergetic and milk production parameters. Twelve multiparous rumen-fistulated Holstein cows (204 +/- 7 d in milk) were offered ad libitum (AL) or restricted (R) pasture and abomasally infused twice daily with 0 (control) or 50 g/d of CLA (CLA; mixed isomers) in a 2-period crossover design. Treatment periods lasted 10 d and were separated by a 10-d washout period. Milk and plasma samples were averaged from d 9 and 10, and EBAL was calculated from d 6 to 10 of the infusion period. Pasture restriction reduced the yield of milk (3.9 kg/d) and milk components. The CLA treatment reduced milk fat yield by 44 and 46% in AL and R, respectively. There was no effect of CLA on milk yield or milk lactose content or yield in either feeding regimen; however, CLA increased the milk protein content and yield by 7 and 6% and by 5 and 8%, in AL and R, respectively. The CLA-induced changes to milk fat and protein doubled the protein:fat ratio in both AL and R. Calculated EBAL improved following the CLA infusion (-0.44 vs. 2.68 and 0.38 vs. 3.29 Mcal/d for AL and R, respectively); however, CLA did not alter plasma bioenergetic markers. Data indicate that during short periods of nutrient limitation, supplemental CLA may be an alternative management tool to enhance protein synthesis and improve the milk protein:fat ratio and calculated EBAL in cows grazing pasture. Further studies are required to determine whether CLA is effective at improving bioenergetic and production parameters during more severe or longer term nutrient restriction.


Assuntos
Bovinos/fisiologia , Dieta , Metabolismo Energético/efeitos dos fármacos , Lactação/efeitos dos fármacos , Ácidos Linoleicos Conjugados/administração & dosagem , Abomaso/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Suplementos Nutricionais , Ingestão de Energia , Ácidos Graxos/análise , Feminino , Concentração de Íons de Hidrogênio , Lactose/análise , Lipídeos/análise , Leite/química , Leite/efeitos dos fármacos , Proteínas do Leite/análise , Nitrogênio/análise
18.
J Dairy Sci ; 90(1): 136-44, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17183082

RESUMO

The study was designed to test the effects of feeding fish meal (FM) and specific n-3 fatty acids on milk yield and composition, dry matter intake, plasma concentrations of metabolic hormones and metabolites, and liver triglyceride accumulation in early lactating cows. From 5 to 50 d in milk (DIM), cows were fed diets that were isonitrogenous, isoenergetic, and isolipidic containing none (control), 1.25, 2.5, or 5% menhaden FM or 2.3% Ca salts of fish oil fatty acids (CaFOFA). Milk yield (48.2, 49.8, 48.6, 53.5, and 52.2 +/- 1.0 kg/d, respectively) and dry matter intake (22.7, 22.8, 23.0, 23.8, and 24.7 +/- 0.5 kg/d, respectively) differed among diets. Average daily plasma glucose concentration (53.4, 55.3, 51.1, 57.6, and 57.3 +/- 1.3 mg/dL, respectively) was also affected by diet, and plasma insulin concentration was increased by 5% FM and 2.3% Ca-FOFA. At 25 and 50 DIM, blood was collected before feeding and hourly for 11 h after feeding. Plasma glucose concentrations in cows during the day were similar among diets at 25 DIM, but differed at 50 DIM (54.6, 54.4, 52.4, 60.5, and 58.3 +/- 1.4 mg/dL for 0, 1.25, 2.5, and 5% FM or 2.3% CaFOFA, respectively). Plasma insulin was increased in cows fed 5% FM and 2.3% CaFOFA at 25 DIM and was similar among diets at 50 DIM. Dietary treatments had no significant effect on milk composition, energy balance, or on daily plasma concentrations of nonesterified fatty acids, beta-hydroxybutyrate, and urea. Plasma aspartate aminotransferase and hepatic triglyceride concentration in cows did not differ among diets at 21 DIM. Results from this experiment demonstrate that dietary supplementation with FM or n-3 polyunsaturated fatty acids in early lactating dairy cows significantly increased milk yield and DMI with no change in milk composition.


Assuntos
Bovinos/fisiologia , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Produtos Pesqueiros , Lactação/efeitos dos fármacos , Animais , Análise Química do Sangue/veterinária , Constituição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Bovinos/metabolismo , Indústria de Laticínios , Dieta/veterinária , Feminino , Leite/química , Leite/metabolismo , Fatores de Tempo
19.
J Dairy Sci ; 90(1): 145-54, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17183083

RESUMO

The study was designed to test the effects of dietary supplementation with fish meal or specific n-3 fatty acids on ovarian activity and uterine responses in early lactating cows. From 5 to 50 d in milk (DIM), cows were fed diets that were isonitrogenous, isoenergetic, and isolipidic containing none (control), 1.25, 2.5, or 5% menhaden fish meal (FM) or 2.3% Ca salts of fish oil fatty acids (CaFOFA). Ovarian follicular dynamics were monitored along with plasma concentrations of estradiol and progesterone. Beginning at 23 DIM, cows were induced into a synchronized ovulatory cycle. On d 15 after ovulation (49 DIM), cows were injected with oxytocin and blood samples were collected to monitor uterine release of PGF(2alpha) (measured as 13, 14-dihydro-15-keto PGF(2alpha); PGFM). Uterine endometrial biopsies were collected for fatty acid analysis and cyclooxygenase-2 (COX-2) protein measurement. Ovarian follicular activities as well as plasma estradiol and progesterone concentrations were similar across diets. Endometrial fatty acid composition of eicosapentaenoic acid (C20:5, n-3) and docosahexaenoic acid (C22:6, n-3) were increased as much as 3-fold by supplementation with fish meal and CaFOFA. Conjugated linoleic acid (C18:2 cis-9, trans-11) in the endometrium was also increased; conversely, arachidonic acid (C20:4, n-6) percentage was decreased by 5% FM. Plasma PGFM response to oxytocin injection was not different among diets and endometrial COX-2 protein abundance did not differ. Results from this experiment demonstrate that dietary supplementation with fish meal or n-3 fatty acids in early lactating dairy cows significantly increased uterine n-3 fatty acid concentrations, but had no apparent effect on endometrial COX-2 or PGF(2alpha) production in response to oxytocin challenge.


Assuntos
Bovinos/fisiologia , Suplementos Nutricionais , Endométrio/efeitos dos fármacos , Ácidos Graxos Ômega-3/administração & dosagem , Produtos Pesqueiros , Folículo Ovariano/efeitos dos fármacos , Ração Animal/análise , Animais , Ciclo-Oxigenase 2/análise , Indústria de Laticínios , Dieta/veterinária , Dinoprosta/análogos & derivados , Dinoprosta/sangue , Endométrio/química , Ácidos Graxos/análise , Feminino , Lactação , Fígado/química , Fígado/efeitos dos fármacos , Fígado/enzimologia , Ocitocina/administração & dosagem , Ocitocina/farmacologia , Fatores de Tempo
20.
J Dairy Sci ; 89(12): 4620-31, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17106094

RESUMO

The trans-10, cis-12 conjugated linoleic acid (CLA) isomer inhibits milk fat synthesis, whereas milk yield and synthesis of other milk components generally remain unchanged in established lactation. However, in some CLA studies increases in milk yield, milk protein yield, or both have been observed in cows limited in energy, either in early lactation or when grazing pasture. Our objective was to evaluate the performance and monitor peripheral tissue responses to homeostatic signals regulating lipolysis and glucose uptake with CLA supplementation when cows were limited in metabolizable energy in combination with moderate or excess metabolizable protein supply. Holstein cows (n = 48; 112 +/- 5 d in milk; mean +/- SE) were provided ad libitum access to a diet that met energy and protein requirements for a 16-d standardization interval. Based on performance during this interval, the Cornell Net Carbohydrate and Protein System was used to design energy-limiting rations that provided 80% of metabolizable energy requirements, and these were fed throughout the treatment periods. Cows were randomly allocated to 4 treatments, in a 2-period crossover design. Treatments were 1) moderate metabolizable protein (MP) supply, 2) moderate MP supply + CLA, 3) excess MP supply, and 4) excess MP supply + CLA. Moderate and excess MP supply were at 88 and 117%, respectively, of the MP requirement established during the standardization period, as estimated by the Cornell Net Carbohydrate and Protein System. Each experimental period comprised 16 d, with crossover of CLA within each protein level. The lipid-encapsulated CLA supplement provided 12 g/d of trans-10, cis-12 CLA. Conjugated linoleic acid treatment reduced milk fat yield by 21% but increased milk yield and milk protein yield by 2.6 and 2.8%, respectively. Milk yield and content and yield of both milk protein and fat were unaltered by either protein treatment alone or in combination with CLA. Basal concentrations of glucose, insulin, and nonesterified fatty acids were unaffected by CLA supplementation. The fractional rate of glucose clearance in response to an insulin challenge and the nonesterified fatty acid response to an epinephrine challenge were also not altered by either CLA treatment or MP supply. Overall, the results demonstrate that CLA supplementation when cows are energy-limited allows for repartitioning of nutrients, resulting in increased yields of milk and milk protein, and this can occur without changes in whole-body glucose homeostasis and adipose tissue response to lipolytic stimuli.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Bovinos/fisiologia , Ingestão de Energia/fisiologia , Lactação/efeitos dos fármacos , Ácido Linoleico/fisiologia , Leite/química , Ração Animal/análise , Animais , Estudos Cross-Over , Indústria de Laticínios , Dieta/veterinária , Proteínas Alimentares/metabolismo , Suplementos Nutricionais , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Insulina/administração & dosagem , Insulina/farmacologia , Ácido Linoleico/administração & dosagem , Leite/metabolismo , Distribuição Aleatória , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA