Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2019: 5189490, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31089409

RESUMO

Breast cancer (BC) is the leading cause of death among women worldwide devoid of effective treatment. It is therefore important to develop agents that can reverse, reduce, or slow the growth of BC. The use of natural products as chemopreventive agents provides enormous advantages. The aim of the current investigation is to determine the efficacy of the phytochemicals against BC along with the approved drugs to screen the most desirable and effective phytocompound. In the current study, 36 phytochemicals have been evaluated against aromatase to identify the potential candidate drug along with the approved drugs employing the Cdocker module accessible on the Discovery Studio (DS) v4.5 and thereafter analysing the stability of the protein ligand complex using GROningen MAchine for Chemical Simulations v5.0.6 (GROMACS). Additionally, these compounds were assessed for the inhibitory features employing the structure-based pharmacophore (SBP). The Cdocker protocol available with the DS has computed higher dock scores for the phytochemicals complemented by lower binding energies. The top-ranked compounds that have anchored with key residues located at the binding pocket of the protein were subjected to molecular dynamics (MD) simulations employing GROMACS. The resultant findings reveal the stability of the protein backbone and further guide to comprehend on the involvement of key residues Phe134, Val370, and Met374 that mechanistically inhibit BC. Among 36 compounds, curcumin, capsaicin, rosmarinic acid, and 6-shogaol have emerged as promising phytochemicals conferred with the highest Cdocker interaction energy, key residue interactions, stable MD results than reference drugs, and imbibing the key inhibitory features. Taken together, the current study illuminates the use of natural compounds as potential drugs against BC. Additionally, these compounds could also serve as scaffolds in designing and development of new drugs.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Hormônios/uso terapêutico , Compostos Fitoquímicos/uso terapêutico , Domínio Catalítico , Feminino , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Relação Estrutura-Atividade , Termodinâmica
2.
Ann Clin Microbiol Antimicrob ; 17(1): 16, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29609660

RESUMO

BACKGROUND: Antibiotic resistance is a defense mechanism, harbored by pathogens to survive under unfavorable conditions. Among several antibiotic resistant microbial consortium, Staphylococcus aureus is one of the most havoc microorganisms. Staphylococcus aureus encodes a unique enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), against which, none of existing antibiotics have been reported. METHODS: Computational approaches have been instrumental in designing and discovering new drugs for several diseases. The present study highlights the impact of ginger phytochemicals on Staphylococcus aureus SaHPPK. Herein, we have retrieved eight ginger phytochemicals from published literature and investigated their inhibitory interactions with SaHPPK. To authenticate our work, the investigation proceeds considering the known antibiotics alongside the phytochemicals. Molecular docking was performed employing GOLD and CDOCKER. The compounds with the highest dock score from both the docking programmes were tested for their inhibitory capability in vitro. The binding conformations that were seated within the binding pocket showing strong interactions with the active sites residues rendered by highest dock score were forwarded towards the molecular dynamic (MD) simulation analysis. RESULTS: Based on molecular dock scores, molecular interaction with catalytic active residues and MD simulations studies, two ginger phytochemicals, gingerenone-A and shogaol have been proposed as candidate inhibitors against Staphylococcus aureus. They have demonstrated higher dock scores than the known antibiotics and have represented interactions with the key residues within the active site. Furthermore, these compounds have rendered considerable inhibitory activity when tested in vitro. Additionally, their superiority was corroborated by stable MD results conducted for 100 ns employing GROMACS package. CONCLUSIONS: Finally, we suggest that gingerenone-A and shogaol may either be potential SaHPPK inhibitors or can be used as fundamental platforms for novel SaHPPK inhibitor development.


Assuntos
Catecóis/antagonistas & inibidores , Diarileptanoides/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/antagonistas & inibidores , Extratos Vegetais/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Zingiber officinale/química , Antibacterianos/farmacologia , Sítios de Ligação , Domínio Catalítico , Catecóis/química , Diarileptanoides/química , Humanos , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Compostos Fitoquímicos/química , Extratos Vegetais/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA