Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nutr ; 143(7): 1028-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23700346

RESUMO

Impaired folate-mediated one-carbon metabolism (OCM) has emerged as a risk factor for several diseases associated with age-related cognitive decline, but the underlying mechanisms remain unknown and thus hinder the identification of subpopulations most vulnerable to OCM disruption. Here we investigated the role of serine hydroxymethyltransferase 1 (SHMT1), a folate-dependent enzyme regulating de novo thymidylate biosynthesis, in influencing neuronal and cognitive function in the adult mouse. We observed Shmt1 expression in the hippocampus, including the granule cell layer of the dentate gyrus (DG), and examined hippocampal neurogenesis and hippocampal-dependent fear conditioning in mice deficient for Shmt1. We used a 3 × 3 design in which adult male Shmt1(+/+), Shmt1(+/-), and Shmt1(-/-) mice were fed folic acid control (2 mg/kg), folic acid-deficient (0 mg/kg), or folic acid-supplemented (8 mg/kg) diets from weaning through the duration of the study. Proliferation within the DG was elevated by 70% in Shmt1(+/-) mice, yet the number of newborn mature neurons was reduced by 98% compared with that in Shmt1(+/+) mice. Concomitant with these alterations, Shmt1(+/-) mice showed a 45% reduction in mnemonic recall during trace fear conditioning. Dietary folate manipulations alone did not influence neural outcomes. Together, these data identify SHMT1 as one of the first enzymes within the OCM pathway to regulate neuronal and cognitive profiles and implicate impaired thymidylate biosynthesis in the etiology of folate-related neuropathogenesis.


Assuntos
Glicina Hidroximetiltransferase/genética , Hipocampo/patologia , Memória/fisiologia , Neurogênese/genética , Animais , Proliferação de Células , Giro Denteado/metabolismo , Medo/fisiologia , Ácido Fólico/administração & dosagem , Ácido Fólico/sangue , Deficiência de Ácido Fólico/patologia , Regulação da Expressão Gênica , Glicina Hidroximetiltransferase/metabolismo , Hipocampo/metabolismo , Homocisteína/metabolismo , Hibridização In Situ , Masculino , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Fatores de Risco , Timidina Monofosfato/biossíntese
2.
Am J Clin Nutr ; 95(4): 882-91, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22378735

RESUMO

BACKGROUND: MTHFD1 encodes C1-tetrahydrofolate synthase, which is a folate-dependent enzyme that catalyzes the formation and interconversion of folate-activated one-carbon groups for nucleotide biosynthesis and cellular methylation. A polymorphism in MTHFD1 (1958G→A) impairs enzymatic activity and is associated with increased risk of adverse pregnancy outcomes, but the mechanisms are unknown. OBJECTIVE: The objective of this study was to determine whether disruption of the embryonic or maternal Mthfd1 gene or both interacts with impaired folate and choline status to affect neural tube closure, fetal growth, and fertility in mice and to investigate the underlying metabolic disruptions. DESIGN: Dams with a gene-trapped (gt) allele in Mthfd1 and wild-type dams were fed a control or folate- and choline-deficient AIN93G diet (Dyets Inc). Litters were examined for gross morphologic defects, crown-rump length, and resorptions. Folate status and amounts of folate-related metabolites were determined in pregnant dams. RESULTS: Reduced folate and choline status resulted in severe fetal growth restriction (FGR) and impaired fertility in litters harvested from Mthfd1(gt/+) dams, but embryonic Mthfd1(gt/+) genotype did not affect fetal growth. Gestational supplementation of Mthfd1(gt/+) dams with hypoxanthine increased FGR frequency and caused occasional neural tube defects (NTDs) in Mthfd1(gt/+) embryos. Mthfd1(gt/+) dams exhibited lower red blood cell folate and plasma methionine concentrations than did wild-type dams. CONCLUSIONS: Maternal Mthfd1(gt/+) genotype impairs fetal growth but does not cause NTDs when dams are maintained on a folate- and choline-deficient diet. Mthfd1(gt/+) mice exhibit a spectrum of adverse reproductive outcomes previously attributed to the human MTHFD1 1958G→A polymorphism. Mthfd1 heterozygosity impairs folate status in pregnant mice but does not significantly affect homocysteine metabolism.


Assuntos
Aminoidrolases/deficiência , Retardo do Crescimento Fetal/genética , Ácido Fólico/metabolismo , Formiato-Tetra-Hidrofolato Ligase/deficiência , Homocisteína/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Complexos Multienzimáticos/deficiência , Aminoidrolases/genética , Aminoidrolases/metabolismo , Animais , Colina/metabolismo , Deficiência de Colina/genética , Deficiência de Colina/metabolismo , Cruzamentos Genéticos , Modelos Animais de Doenças , Perda do Embrião/genética , Perda do Embrião/metabolismo , Feminino , Retardo do Crescimento Fetal/metabolismo , Ácido Fólico/sangue , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Formiato-Tetra-Hidrofolato Ligase/genética , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Genes Letais , Heterozigoto , Homocisteína/sangue , Hipoxantina/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Camundongos , Camundongos Mutantes , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutagênese Insercional , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Gravidez
3.
Am J Clin Nutr ; 93(4): 789-98, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21346092

RESUMO

BACKGROUND: Folic acid supplementation prevents the occurrence and recurrence of neural tube defects (NTDs), but the causal metabolic pathways underlying folic acid-responsive NTDs have not been established. Serine hydroxymethyltransferase (SHMT1) partitions folate-derived one-carbon units to thymidylate biosynthesis at the expense of cellular methylation, and therefore SHMT1-deficient mice are a model to investigate the metabolic origin of folate-associated pathologies. OBJECTIVES: We examined whether genetic disruption of the Shmt1 gene in mice induces NTDs in response to maternal folate and choline deficiency and whether a corresponding disruption in de novo thymidylate biosynthesis underlies NTD pathogenesis. DESIGN: Shmt1 wild-type, Shmt1(+/-), and Shmt1(-/-) mice fed either folate- and choline-sufficient or folate- and choline-deficient diets were bred, and litters were examined for the presence of NTDs. Biomarkers of impaired folate metabolism were measured in the dams. In addition, the effect of Shmt1 disruption on NTD incidence was investigated in Pax3(Sp) mice, an established folate-responsive NTD mouse model. RESULTS: Shmt1(+/-) and Shmt1(-/-) embryos exhibited exencephaly in response to maternal folate and choline deficiency. Shmt1 disruption on the Pax3(Sp) background exacerbated NTD frequency and severity. Pax3 disruption impaired de novo thymidylate and purine biosynthesis and altered amounts of SHMT1 and thymidylate synthase protein. CONCLUSIONS: SHMT1 is the only folate-metabolizing enzyme that has been shown to affect neural tube closure in mice by directly inhibiting folate metabolism. These results provide evidence that disruption of Shmt1 expression causes NTDs by impairing thymidylate biosynthesis and shows that changes in the expression of genes that encode folate-dependent enzymes may be key determinates of NTD risk.


Assuntos
Deficiência de Ácido Fólico/complicações , Ácido Fólico/farmacologia , Glicina Hidroximetiltransferase/genética , Mutação , Defeitos do Tubo Neural/etiologia , Timidina Monofosfato/biossíntese , Complexo Vitamínico B/farmacologia , Animais , Biomarcadores/sangue , Colina/farmacologia , Deficiência de Colina/complicações , Modelos Animais de Doenças , Expressão Gênica , Glicina Hidroximetiltransferase/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Purinas/biossíntese , Índice de Gravidade de Doença , Timidilato Sintase/metabolismo
4.
Birth Defects Res A Clin Mol Teratol ; 85(4): 274-84, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19180567

RESUMO

Neural tube defects (NTDs), including anencephaly and spina bifida, arise from the failure of neurulation during early embryonic development. Neural tube defects are common birth defects with a heterogenous and multifactorial etiology with interacting genetic and environmental risk factors. Although the mechanisms resulting in failure of neural tube closure are unknown, up to 70% of NTDs can be prevented by maternal folic acid supplementation. However, the metabolic mechanisms underlying the association between folic acid and NTD pathogenesis have not been identified. This review summarizes our current understanding of the mechanisms by which impairments in folate metabolism might ultimately lead to failure of neural tube closure, with an emphasis on untangling the relative contributions of nutritional deficiency and genetic risk factors to NTD pathogenesis.


Assuntos
Ácido Fólico/uso terapêutico , Redes e Vias Metabólicas/efeitos dos fármacos , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/prevenção & controle , Animais , Transporte Biológico/fisiologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Carbono/metabolismo , Feminino , Ácido Fólico/metabolismo , Humanos , Modelos Biológicos , Gravidez , Resultado do Tratamento
5.
Birth Defects Res C Embryo Today ; 81(3): 183-203, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17963270

RESUMO

Neural tube defects (NTDs) refer to a cluster of neurodevelopmental conditions associated with failure of neural tube closure during embryonic development. Worldwide prevalence of NTDs ranges from approximately 0.5 to 60 per 10,000 births, with regional and population-specific variation in prevalence. Numerous environmental and genetic influences contribute to NTD etiology; accumulating evidence from population-based studies has demonstrated that folate status is a significant determinant of NTD risk. Folate-mediated one-carbon metabolism (OCM) is essential for de novo nucleotide biosynthesis, methionine biosynthesis, and cellular methylation reactions. Periconceptional maternal supplementation with folic acid can prevent occurrence of NTDs in the general population by up to 70%; currently several countries fortify their food supply with folic acid for the prevention of NTDs. Despite the unambiguous impact of folate status on NTD risk, the mechanism by which folic acid protects against NTDs remains unknown. Identification of the mechanism by which folate status affects neural tube closure will assist in developing more efficacious and better targeted preventative measures. In this review, we summarize current research on the relationship between folate status and NTDs, with an emphasis on linking genetic variation, folate nutriture, and specific metabolic and/or genomic pathways that intersect to determine NTD outcomes.


Assuntos
Ácido Fólico/metabolismo , Expressão Gênica , Genoma , Defeitos do Tubo Neural/epidemiologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Animais , Feminino , Ácido Fólico/uso terapêutico , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/prevenção & controle , Variação Genética , Humanos , Modelos Biológicos , Defeitos do Tubo Neural/classificação , Defeitos do Tubo Neural/diagnóstico , Defeitos do Tubo Neural/etiologia , Defeitos do Tubo Neural/prevenção & controle , Assistência Perinatal , Gravidez , Diagnóstico Pré-Natal , Prevalência , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA