Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Talanta ; 132: 579-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25476347

RESUMO

Mapping of elements in biological tissue by laser induced mass spectrometry is a fast growing analytical methodology in life sciences. This method provides a multitude of useful information of metal, nonmetal, metalloid and isotopic distribution at major, minor and trace concentration ranges, usually with a lateral resolution of 12-160 µm. Selected applications in medical research require an improved lateral resolution of laser induced mass spectrometric technique at the low micrometre scale and below. The present work demonstrates the applicability of a recently developed analytical methodology - laser microdissection associated to inductively coupled plasma mass spectrometry (LMD ICP-MS) - to obtain elemental images of different solid biological samples at high lateral resolution. LMD ICP-MS images of mouse brain tissue samples stained with uranium and native are shown, and a direct comparison of LMD and laser ablation (LA) ICP-MS imaging methodologies, in terms of elemental quantification, is performed.


Assuntos
Mapeamento Encefálico/métodos , Hipocampo/química , Microdissecção e Captura a Laser/métodos , Terapia a Laser/métodos , Espectrofotometria Atômica/métodos , Substância Negra/química , Animais , Química Encefálica , Mapeamento Encefálico/instrumentação , Hipocampo/ultraestrutura , Ferro/análise , Microdissecção e Captura a Laser/instrumentação , Terapia a Laser/instrumentação , Magnésio/análise , Camundongos , Fósforo/análise , Potássio/análise , Espectrofotometria Atômica/instrumentação , Substância Negra/ultraestrutura , Urânio/análise , Zinco/análise
2.
Anal Chem ; 84(7): 3170-8, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22413784

RESUMO

Several complementary mass spectrometric imaging techniques allow mapping of various analytes within biological tissue sections. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) quantitatively detects elements and isotopes with very high sensitivity and a particularly high dynamical range. Matrix-assisted laser desorption/ionization ion mobility mass spectrometry (MALDI-IM-MS) allows a pixel-by-pixel classification and identification of biomolecules. In order to dispose of the healthy hemisphere as an internal calibrant in addition to routinely used external standards, adjacent brain sections of mice with a unilateral 6-OHDA lesion of the medial forebrain bundle were chosen as exemplary samples. We demonstrate a comprehensive way of data acquisition and analysis by coregistering mass spectrometric data on photomicrographs as common reference space and thus providing trimodal spatial information. Registering subsequent planar element maps yielded continuous 3-dimensional data sets. Furthermore, we introduce a correction of MSI data for variable slice thickness applicable to all MSI techniques. In the present case, we observed increased concentrations of iron, manganese, and copper in the lesioned substantia nigra while monounsaturated lipid levels were decreased in the identical region of interest. Our techniques provide new insights into the intricate spatial relationship of morphology and chemistry within tissue.


Assuntos
Espectrometria de Massas/métodos , Microtecnologia/métodos , Imagem Molecular/métodos , Animais , Lasers , Masculino , Camundongos , Fenômenos Ópticos , Oxidopamina/farmacologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo
3.
Rapid Commun Mass Spectrom ; 22(18): 2768-72, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18697227

RESUMO

The specific toxicity of trace metals and compounds largely depends on their bioavailability in different organs or compartments of the organism considered. Imaging mass spectrometry (IMS) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with a spatial resolution in the 100 microm range was developed and employed to study heavy metal distribution in brain tissues for toxicological screening. Rat brain post-mortem tissues were stained in an aqueous solution of either uranium or neodymium (metal concentration 100 microg g(-1)) for 3 h. The incubation of heavy metal in thin slices of brain tissue is followed by an imaging mass spectrometric LA-ICP-MS technique. Stained rat brain tissue (thickness 30 microm) were scanned with a focused laser beam (wavelength 266 nm, diameter of laser crater 100 microm and laser power density 3 x 10(9) W cm(-2)). The ion intensities of (235)U(+), (238)U(+), (145)Nd(+) and (146)Nd(+) were measured by LA-ICP-MS within the ablated area. For quantification purposes, matrix-matched laboratory standards were prepared by dosing each analyte to the pieces of homogenized brain tissue. Imaging LA-ICP-MS allows structures of interest to be identified and the relevant dose range to be estimated.


Assuntos
Química Encefálica , Encéfalo/anatomia & histologia , Metais Pesados/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Urânio/análise , Animais , Diagnóstico por Imagem , Ratos , Ratos Endogâmicos F344
4.
Anal Chem ; 77(18): 5851-60, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16159114

RESUMO

Human brain proteins containing phosphorus, copper, and zinc were detected directly in protein spots in gels of a human brain sample after separation by two-dimensional gel electrophoresis using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). A powerful laser ablation system with cooled laser ablation chamber was coupled to a double-focusing sector field ICPMS. The separated protein spots in 2D gels were fast screened using the optimized microanalytical LA-ICPMS technique measured at medium mass resolution with a focused laser beam (wavelength, 213 nm; diameter of laser crater, 50 mum; and laser power density, 3 x 10(9) W cm(-2)) with respect to selected three essential elements. Of 176 protein spots in 2D gel from a human brain sample, phosphorus, copper, and zinc were detected in 31, 43, and 49 protein spots, respectively. For the first time, uranium as a naturally occurring radioactive element was found in 20 selected protein spots. The detection limits for P, S, Cu, Zn and U were determined in singular protein spots with 0.0013, 1.29, 0.029, 0.063, and 0.000 01 mg g(-1), respectively. A combination of LA-ICPMS with matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) was applied for the identification of selected protein spots from human brain protein separated by 2D gel electrophoresis. Combining MALDI-FTICR-MS for the structure analysis of metal- and phosphorus-containing human brain proteins with LA-ICPMS, the direct analysis of heteroelements on separated proteins in 2D gels can be performed. For quantification of analytical LA-ICPMS data, the number of sulfur atoms per protein (and following the sulfur concentration) determined by MALDI-FTICR-MS was used for internal standardization. From the known sulfur concentration in protein, the concentration of other heteroelements was calculated. In addition, the number of phosphorylation and the phosphorylation sites of phosphorylated proteins in the human brain sample detected by LA-ICPMS were determined by MALDI-FTICR-MS. This technique allows the study of posttranslational modifications in human brain proteins.


Assuntos
Encéfalo/metabolismo , Cobre/análise , Espectrometria de Massas/métodos , Fósforo/análise , Proteínas/análise , Proteínas/química , Zinco/análise , Cobre/química , Eletroforese em Gel Bidimensional , Humanos , Fósforo/química , Proteínas/metabolismo , Zinco/química
5.
J Environ Monit ; 7(5): 514-8, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15877175

RESUMO

An analytical procedure has been proposed for the determination of (226)Ra at the low femtogram per ml concentration level in mineral water samples using double focusing sector field ICP-MS (ICP-SFMS). For the pre-concentration and separation of radium from the matrix elements in water a tandem of a laboratory-prepared filter, based on MnO(2), and Eichrom "Sr-specific" resin was used. The recovery of the method was determined to be 70.5%. The limit of detection for (226)Ra determination was 0.02 fg ml(-1), including a pre-concentration factor of 10. In addition, uranium concentration and uranium isotope ratios were measured by ICP-SFMS. In several mineral water samples with a relatively high uranium content, (226)Ra concentrations were found between 0.7-15 fg ml(-1). The effective dose of the contribution was calculated using the radionuclide concentration and dose conversion factors from the World Health Organization, WHO (1993). Assuming a mineral water consumption of 2 l d(-1), a slightly higher calculated dose than the suggested limit for drinking water (0.1 mSv y(-1)) was found in some samples.


Assuntos
Radônio/análise , Urânio/análise , Poluentes Radioativos da Água/análise , Abastecimento de Água , Monitoramento Ambiental/métodos , Valores de Referência , Sensibilidade e Especificidade , Espectrofotometria Atômica
6.
Anal Bioanal Chem ; 375(4): 561-6, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12610711

RESUMO

Inductively coupled plasma mass spectrometry (ICP-MS) is used for phosphorus determination in protein samples. A small amount of solid protein sample (down to 1 micro g) or digest (1-10 micro L) protein solution was denatured in nitric acid and hydrogen peroxide by closed-microvessel microwave digestion. Phosphorus determination was performed with an optimized analytical method using a double-focusing sector field inductively coupled plasma mass spectrometer (ICP-SFMS) and quadrupole-based ICP-MS (ICP-QMS). For quality control of phosphorus determination a certified reference material (CRM), single cell proteins (BCR 273) with a high phosphorus content of 26.8+/-0.4 mg g(-1), was analyzed. For studies on phosphorus determination in proteins while reducing the sample amount as low as possible the homogeneity of CRM BCR 273 was investigated. Relative standard deviation and measurement accuracy in ICP-QMS was within 2%, 3.5%, 11% and 12% when using CRM BCR 273 sample weights of 40 mg, 5 mg, 1 mg and 0.3 mg, respectively. The lowest possible sample weight for an accurate phosphorus analysis in protein samples by ICP-MS is discussed. The analytical method developed was applied for the analysis of homogeneous protein samples in very low amounts [1-100 micro g of solid protein sample, e.g. beta-casein or down to 1 micro L of protein or digest in solution (e.g., tau protein)]. A further reduction of the diluted protein solution volume was achieved by the application of flow injection in ICP-SFMS, which is discussed with reference to real protein digests after protein separation using 2D gel electrophoresis.The detection limits for phosphorus in biological samples were determined by ICP-SFMS down to the ng g(-1) level. The present work discusses the figure of merit for the determination of phosphorus in a small amount of protein sample with ICP-SFMS in comparison to ICP-QMS.


Assuntos
Espectrometria de Massas/métodos , Fósforo/análise , Proteínas/química , Animais , Caseínas/química , Humanos , Microquímica/instrumentação , Microquímica/métodos , Fragmentos de Peptídeos/análise , Reprodutibilidade dos Testes , Tripsina/metabolismo
7.
J Environ Monit ; 4(6): 997-1002, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12509057

RESUMO

This work presents experimental results on the distribution of irradiated reactor uranium from fallout after the accident at Chernobyl Nuclear Power Plant (NPP) in comparison to natural uranium distribution in different soil types. Oxidation processes and vertical migration of irradiated uranium in soils typical of the 30 km relocation area around Chernobyl NPP were studied using 236U as the tracer for irradiated reactor uranium and inductively coupled plasma mass spectrometry as the analytical method for uranium isotope ratio measurements. Measurements of natural uranium yielded significant variations of its concentration in upper soil layers from 2 x 10(-7) g g(-1) to 3.4 x 10(-6) g g(-1). Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 5 x 10(-12) g g(-1) to 2 x 10(-6) g g(-1) depending on the distance from Chernobyl NPP. In the majority of investigated soil profiles 78% to 97% of irradiated "Chernobyl" uranium is still contained in the upper 0-10 cm soil layers. The physical and chemical characteristics of the soil do not have any significant influence on processes of fuel particle destruction. Results obtained using carbonate leaching of 236U confirmed that more than 60% of irradiated "Chernobyl" uranium is still in a tetravalent form, ie. it is included in the fuel matrix (non-oxidized fuel UO2). The average value of the destruction rate of fuel particles determined for the Western radioactive trace (k = 0.030 +/- 0.005 yr(-1)) and for the Northern radioactive trace (k = 0.035 + 0.009 yr(-1)) coincide within experimental errors. Use of leaching of fission products in comparison to leaching of uranium for study of the destruction rate of fuel particles yielded poor coincidence due to the fact that use of fission products does not take into account differences in the chemical properties of fission products and fuel matrix (uranium).


Assuntos
Monitoramento Ambiental/métodos , Centrais Elétricas , Cinza Radioativa/análise , Liberação Nociva de Radioativos , Poluentes Radioativos do Solo/análise , Urânio/análise , Espectrometria de Massas , Fissão Nuclear , República de Belarus , Ucrânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA