Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(20): e2202756, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37017403

RESUMO

Primary hemostasis (platelet plug formation) and secondary hemostasis (fibrin clot formation) are intertwined processes that occur upon vascular injury. Researchers have sought to target wounds by leveraging cues specific to these processes, such as using peptides that bind activated platelets or fibrin. While these materials have shown success in various injury models, they are commonly designed for the purpose of treating solely primary or secondary hemostasis. In this work, a two-component system consisting of a targeting component (azide/GRGDS PEG-PLGA nanoparticles) and a crosslinking component (multifunctional DBCO) is developed to treat internal bleeding. The system leverages increased injury accumulation to achieve crosslinking above a critical concentration, addressing both primary and secondary hemostasis by amplifying platelet recruitment and mitigating plasminolysis for greater clot stability. Nanoparticle aggregation is measured to validate concentration-dependent crosslinking, while a 1:3 azide/GRGDS ratio is found to increase platelet recruitment, decrease clot degradation in hemodiluted environments, and decrease complement activation. Finally, this approach significantly increases survival relative to the particle-only control in a liver resection model. In light of prior successes with the particle-only system, these results emphasize the potential of this technology in aiding hemostasis and the importance of a holistic approach in engineering new treatments for hemorrhage.


Assuntos
Trombose , Doenças Vasculares , Humanos , Azidas/metabolismo , Hemorragia/tratamento farmacológico , Hemostasia , Doenças Vasculares/metabolismo , Plaquetas/metabolismo , Fibrina
2.
ACS Nano ; 13(5): 5356-5365, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31009198

RESUMO

Improved cytoreductive surgery for advanced stage ovarian cancer (OC) represents a critical challenge in the treatment of the disease. Optimal debulking reaching no evidence of macroscopic disease is the primary surgical end point with a demonstrated survival advantage. Targeted molecule-based fluorescence imaging offers complete tumor resection down to the microscopic scale. We used a custom-built reflectance/fluorescence imaging system with an orthotopic OC mouse model to both quantify tumor detectability and evaluate the effect of fluorescence image-guided surgery on post-operative survival. The contrast agent is an intraperitoneal injectable nanomolecular probe, composed of single-walled carbon nanotubes, coupled to an M13 bacteriophage carrying a modified peptide binding to the SPARC protein, an extracellular protein overexpressed in OC. The imaging system is capable of detecting a second near-infrared window fluorescence (1000-1700 nm) and can display real-time video imagery to guide intraoperative tumor debulking. We observed high microscopic tumor detection with a pixel-limited resolution of 200 µm. Moreover, in a survival-surgery orthotopic OC mouse model, we demonstrated an increased survival benefit for animals treated with fluorescence image-guided surgical resection compared to standard surgery.


Assuntos
Meios de Contraste/farmacologia , Nanotubos de Carbono/química , Imagem Óptica , Neoplasias Ovarianas/diagnóstico por imagem , Animais , Bacteriófago M13/química , Linhagem Celular Tumoral , Meios de Contraste/química , Procedimentos Cirúrgicos de Citorredução/métodos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Osteonectina/química , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/cirurgia , Cirurgia Assistida por Computador/métodos
3.
Nanoscale ; 11(3): 1091-1102, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30574649

RESUMO

Porous metal nanofoams have made significant contributions to a diverse set of technologies from separation and filtration to aerospace. Nonetheless, finer control over nano and microscale features must be gained to reach the full potential of these materials in energy storage, catalytic, and sensing applications. As biologics naturally occur and assemble into nano and micro architectures, templating on assembled biological materials enables nanoscale architectural control without the limited chemical scope or specialized equipment inherent to alternative synthetic techniques. Here, we rationally assemble 1D biological templates into scalable, 3D structures to fabricate metal nanofoams with a variety of genetically programmable architectures and material chemistries. We demonstrate that nanofoam architecture can be modulated by manipulating viral assembly, specifically by editing the viral surface coat protein, as well as altering templating density. These architectures were retained over a broad range of compositions including monometallic and bi-metallic combinations of noble and transition metals of copper, nickel, cobalt, and gold. Phosphorous and boron incorporation was also explored. In addition to increasing the surface area over a factor of 50, as compared to the nanofoam's geometric footprint, this process also resulted in a decreased average crystal size and altered phase composition as compared to non-templated controls. Finally, templated hydrogels were deposited on the centimeter scale into an array of substrates as well as free standing foams, demonstrating the scalability and flexibility of this synthetic method towards device integration. As such, we anticipate that this method will provide a platform to better study the synergistic and de-coupled effects between nano-structure and composition for a variety of applications including energy storage, catalysis, and sensing.


Assuntos
Nanoestruturas/química , Bacteriófago M13/química , Bacteriófago M13/metabolismo , Técnicas Biossensoriais , Boro/química , Catálise , Hidrogéis/química , Metais/química , Fósforo/química , Porosidade , Sais/química
4.
Biotechnol Bioeng ; 97(5): 1009-20, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17238208

RESUMO

In order to facilitate a novel means for coupling proteins to metal oxides, peptides were identified from a dodecamer peptide yeast surface display library that bound a model metal oxide material, the C, A, and R crystalline faces of synthetic sapphire (alpha-Al(2)O(3)). Seven rounds of screening yielded peptides enriched in basic amino acids compared to the naive library. While the C-face had a high background of endogenous yeast cell binding, the A- and R faces displayed clear peptide-mediated cell adhesion. Cell detachment assays showed that cell adhesion strength correlated positively with increasing basicity of expressed peptides. Cell adhesion was also shown to be sensitive to buffer ionic strength as well as incubation with soluble peptide (with half maximal inhibition of cell binding at approximately 5 microM peptide). Next, dodecamer peptides cloned into yeast showed that lysine led to stronger interactions than arginine, and that charge distribution affected adhesion strength. We postulate binding to arise from peptide geometries that permit conformation alignment of the basic amino acids towards the surface so that the charged groups can undergo local electrostatic interactions with the surface oxide. Lastly, peptide K1 (-(GK)(6)) was cloned onto the c-terminus of maltose binding protein (MBP) and the resultant mutant protein showed a half-maximal binding at approximately 10(-7)-10(-6) M, which marked a approximately 500- to 1,000-fold binding improvement to sapphire's A-face as compared with wild-type MBP. Targeting proteins to metal oxide surfaces with peptide tags may provide a facile one-step alternative coupling chemistry for the formation of protein bioassays and biosensors.


Assuntos
Marcadores de Afinidade/química , Óxido de Alumínio/química , Adesão Celular/fisiologia , Materiais Revestidos Biocompatíveis/química , Peptídeos/química , Saccharomyces cerevisiae/fisiologia , Sítios de Ligação , Técnicas de Cultura de Células/métodos , Biblioteca de Peptídeos , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA