Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Pharm ; 650: 123701, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38081556

RESUMO

Zinc is one of the most studied trace elements, commonly used as supplement in diabetes treatment. By its involvement in the synthesis, secretion of insulin, promotion of insulin sensitivity and its multiple enzymatic functions it is known to contribute to reduce hyperglycemia. Researchers have shown that zinc administered under the form of zinc oxide nanoparticles (ZnONPs) is more effective than under its ionic form. Studies evaluating the antihyperglycemic activity of these nanocarriers include both ZnONPs synthesised using plants (i.e. green synthesized) or chemically synthesized. The present work aims to compare green synthesized ZnONPs with the marketed chemically synthesized ones. Green ZnONPs were synthesized using the aqueous extract of the stem bark of the medicinal plant Panda oleosa and zinc nitrate hexahydrate. Both nanocarriers were compared in terms of optical properties, morphology, composition, chemical functions, resistance to oxidation, in vivo antihyperglycemic activity via oral glucose tolerance test (OGTT) and pharmacokinetics in relation to zinc in C57BL/6J mice. A UV absorption peak was observed at 354 nm and 374 nm for the green and marketed ZnONPs, respectively. The shape and hydrodynamic diameters were anisotropic and of 228.8 ± 3.0 nm for the green ZnONPs and spherical and of 225.6 ± 0.9 nm for the marketed ZnONPs. Phenolic compounds accounted for 2.58 ± 0.04% of the green ZnONPs and allowed them to be more stable and unaffected by an oxidizing agent during the experiment, while the marketed chemically synthesized ZnONPs aggregated with or without contact with an oxidizing agent. No significant differences were observed on the amounts of zinc absorbed when comparing green ZnONPs, chemically synthesized ZnONPs and zinc sulfate in a pharmacokinetics study in normoglycemic mice. When evaluating the in vivo hypoglycemic activity of the nanocarriers in obese/diabetic mice, green synthesized ZnONPs displayed a significant hypoglycemic effect compared with the chemically synthesized nanoparticles following an OGTT. Altogether, these data indicate that phytocompounds, as catechin derivatives and polyphenols, attached to the green synthesized ZnONPs' surface, could contribute to their hypoglycemic activity. The comparison thus demonstrated that green synthesized ZnONPs are significantly more efficient than chemically ones at reducing hyperglycemia regardless of their absorption.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Camundongos , Animais , Óxido de Zinco/química , Hipoglicemiantes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas/química , Zinco , Oxidantes , Nanopartículas Metálicas/química
2.
Int J Pharm ; 635: 122715, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36773728

RESUMO

Zinc oxide nanoparticles (ZnONPs) have shown antidiabetic activity in multiple studies and can be produced by different plant-mediated ("green") methods. This study aimed to compare ZnONPs prepared via different "green" approaches (heating at high temperatures (400 °C) vs. low temperature (70 °C)). The low temperature method involved addition of suspending agents (Tween 80 or gum arabic) and pH variations followed by lyophilization. The study evaluated the hypoglycemic potential of ZnONPs with the best properties (quantity of capped agents and stability) compared to the plant extract per se. The ZnONP synthesis involved a mixture of zinc nitrate hexahydrate as the zinc precursor and a plant extract with high antioxidant activity as the capping agent supplier. The results of the studies showed that the procedure using high-temperature heating resulted in almost uncapped nanoparticles with phytocompounds (0.01 % of phenolic compounds) and nanoparticle sizes larger than 300 nm. The low-temperature method produced ZnONPs with high retention of capping agents (92.90 % of phenolic compounds) and a size of approximately 200 nm. The use of Tween 80 with pH adjustment between 9 and 10 resulted in more stable nanoparticles than with gum arabic. These nanoparticles prepared with Tween 80, exhibited a pronounced in vivo antihyperglycemic activity at a much lower dose (10 mg ZnO/kg capped by 0.31 mg phenolic compounds per kg) than the extracts alone (400 mg extract/kg) following an oral glucose tolerance test. These results demonstrated that green-synthesized ZnONPs with a high retention rate of phytochemicals can induce antihyperglycemic effects at a low dose.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hipoglicemiantes/farmacologia , Goma Arábica , Polissorbatos , Nanopartículas/química , Nanopartículas Metálicas/química
3.
Pharmaceutics ; 14(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36297570

RESUMO

Diabetes is a metabolic pathology with chronic high blood glucose levels that occurs when the pancreas does not produce enough insulin or the body does not properly use the insulin it produces. Diabetes management is a puzzle and focuses on a healthy lifestyle, physical exercise, and medication. Thus far, the condition remains incurable; management just helps to control it. Its medical treatment is expensive and is to be followed for the long term, which is why people, especially from low-income countries, resort to herbal medicines. However, many active compounds isolated from plants (phytocompounds) are poorly bioavailable due to their low solubility, low permeability, or rapid elimination. To overcome these impediments and to alleviate the cost burden on disadvantaged populations, plant nanomedicines are being studied. Nanoparticulate formulations containing antidiabetic plant extracts or phytocompounds have shown promising results. We herein aimed to provide an overview of the use of lipid- and inorganic-based nanoparticulate delivery systems with plant extracts or phytocompounds for the treatment of diabetes while highlighting their advantages and limitations for clinical application. The findings from the reviewed works showed that these nanoparticulate formulations resulted in high antidiabetic activity at low doses compared to the corresponding plant extracts or phytocompounds alone. Moreover, it was shown that nanoparticulate systems address the poor bioavailability of herbal medicines, but the lack of enough preclinical and clinical pharmacokinetic and/or pharmacodynamic trials still delays their use in diabetic patients.

4.
Int J Pharm ; 580: 119180, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32135227

RESUMO

Senicapoc (SEN), a potent antisickling agent, shows poor water solubility and poor oral bioavailability. To improve the solubility and cell permeation of SEN, self-nanoemulsifying drug delivery systems (SNEDDSs) were developed. Capryol PGMC®, which showed the highest solubilization capacity, was selected as the oil. The self-emulsification ability of two surfactants, viz., Cremophor-EL® and Tween® 80, was compared. Based on a solubility study and ternary phase diagrams, three optimized nanoemulsions with droplet sizes less than 200 nm were prepared. An in vitro dissolution study demonstrated the superior performance of the SNEDDS over the free drug. During in vitro lipolysis, 80% of SEN loaded in the SNEDDS remained solubilized. An in vitro cytotoxicity study using the Caco-2 cell line indicated the safety of the formulations at 1 mg/mL. The transport of SEN-SNEDDSs across Caco-2 monolayers was enhanced 115-fold (p < 0.01) compared to that of the free drug. According to these results, SNEDDS formulations could be promising tools for the oral delivery of SEN.


Assuntos
Acetamidas/síntese química , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Emulsificantes/síntese química , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Compostos de Tritil/síntese química , Acetamidas/farmacocinética , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Emulsificantes/farmacocinética , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/fisiologia , Solubilidade , Compostos de Tritil/farmacocinética
5.
Colloids Surf B Biointerfaces ; 143: 327-335, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27022873

RESUMO

Selective drug delivery to inflamed tissues is of widespread interest for the treatment of inflammatory bowel disease (IBD). Because a lack of physiological lipids has been described in patients suffering IBD, and some lipids present immunomodulatory properties, we hypothesize that the combination of lipids and anti-inflammatory drugs together within a nanocarrier may be a valuable strategy for overcoming IBD. In the present study, we investigated and compared the in vitro and in vivo efficacy of three lipid-based nanocarriers containing curcumin (CC) as an anti-inflammatory drug for treating IBD in a murine DSS-induced colitis model. These nanocarriers included self-nanoemulsifying drug delivery systems (SNEDDS), nanostructured lipid carriers (NLC) and lipid core-shell protamine nanocapsules (NC). In vitro, a 30-fold higher CC permeability across Caco-2 cell monolayers was obtained using NC compared to SNEDDS (NC>SNEDDS>NLC and CC suspension). The CC SNEDDS and CC NLC but not the CC NC or CC suspension significantly reduced TNF-α secretion by LPS-activated macrophages (J774 cells). In vivo, only CC NLC were able to significantly decrease neutrophil infiltration and TNF-α secretion and, thus, colonic inflammation. Our results show that a higher CC permeability does not correlate with a higher efficacy in IBD treatment, which suggests that lipidic nanocarriers exhibiting increased CC retention at the intestinal site, rather than increased CC permeability are efficient treatments of IBD.


Assuntos
Curcumina/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Lipídeos/química , Nanopartículas/química , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Células CACO-2 , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Curcumina/administração & dosagem , Curcumina/química , Sulfato de Dextrana , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Microscopia Confocal , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA