Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958750

RESUMO

Nano-range bioactive colloidal carrier systems are envisaged to overcome the challenges associated with treatments of numerous diseases. Lipid nanoparticles (LNPs), one of the extensively investigated drug delivery systems, not only improve pharmacokinetic parameters, transportation, and chemical stability of encapsulated compounds but also provide efficient targeting and reduce the risk of toxicity. Over the last decades, nature-derived polyphenols, vitamins, antioxidants, dietary supplements, and herbs have received more attention due to their remarkable biological and pharmacological health and medical benefits. However, their poor aqueous solubility, compromised stability, insufficient absorption, and accelerated elimination impede research in the nutraceutical sector. Owing to the possibilities offered by various LNPs, their ability to accommodate both hydrophilic and hydrophobic molecules and the availability of various preparation methods suitable for sensitive molecules, loading natural fragile molecules into LNPs offers a promising solution. The primary objective of this work is to explore the synergy between nature and nanotechnology, encompassing a wide range of research aimed at encapsulating natural therapeutic molecules within LNPs.


Assuntos
Suplementos Nutricionais , Nanopartículas , Disponibilidade Biológica , Lipossomos , Sistemas de Liberação de Medicamentos , Nanopartículas/química
2.
Drug Des Devel Ther ; 14: 5059-5076, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33239865

RESUMO

PURPOSE: The aim of our research work was to develop dermally applicable, lidocaine hydrochloride (LID-HCl)-containing semisolid in situ film-forming systems (FFSs) using the Quality by Design (QbD) approach to increase drug permeation into the skin. METHODS: Silicones were used to improve the properties of formulations and to increase the permeation through the skin. The QbD approach was applied to ensure quality-based development. With initial risk assessment, the critical material attributes (CMAs) and the critical process parameters (CPPs) were identified to ensure the required critical quality attributes (CQAs). RESULTS: During the initial risk assessment, four high-risk CQAs, namely in vitro drug release, in vitro drug permeation, drying properties, and mechanical properties, and three medium-risk CQAs, namely pH, viscosity, and film appearance were identified and investigated. Moreover, four high-risk CMAs were also considered during the formulation: permeation enhancing excipients, drying excipients, film-forming excipients, and emollients. During the experiments, LID-HCl influenced these critical parameters highly, thereby reducing the drying time. The formulation containing 25% silicone showed the best mechanical properties (49 mN skin adhesion, 20.3% film flexibility, 1.27 N film burst strength), which could predict better patient adherence. In addition, in vitro permeation studies showed that formulation containing 50% silicone has the fastest permeation rate. The flux of diffused API was 6.763 µg/cm2/h, which is much higher compared to the silicone-free formulation (1.5734 µg/cm2/h), and it can already be observed in the lower part of the dermis in 0.5 hour. CONCLUSION: Our results show that LID-HCl has great influence on the critical parameters of FFSs. The silicone content can improve the applicability of formulations and has a favorable effect on the permeation rate of LID-HCl into the skin.


Assuntos
Anestesia Local , Lidocaína/farmacologia , Absorção Cutânea/efeitos dos fármacos , Pele/efeitos dos fármacos , Administração Cutânea , Feminino , Humanos , Lidocaína/administração & dosagem
3.
Drug Des Devel Ther ; 12: 1917-1930, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29983546

RESUMO

PURPOSE: Since electroporation (EP) can increase the permeability of biological membranes, we hypothesized that it offers an opportunity to enhance the transdermal delivery of drugs for intra-articular indications. Our aim was to compare the anti-inflammatory and analgesic efficacy of EP-combined topical administration of diclofenac sodium hydrogel (50 mg mL-1 in 230 µL volume) with that of an equivalent dose of oral (75 mg kg-1) and simple topical administration. METHODS: Arthritis was induced with the injection of 2% λ-carrageenan and 4% kaolin into the right knee joints of male Sprague Dawley rats. EP was applied for 8 min with 900 V high-voltage pulses for 5 ms followed by a 20 ms break. Drug penetration into the synovial fluid and plasma was detected by high-performance liquid chromatography. Leukocyte-endothelial interactions were visualized by intravital videomicroscopy on the internal surface of the synovium. Inflammation-induced thermal and mechanical hyperalgesia reactions, knee joint edema, and inflammatory enzyme activities were assessed at 24 and 48 h after arthritis induction. RESULTS: EP significantly increased the plasma level of diclofenac as compared with the topical controls 10 min after the 2% λ-carrageenan and 4% kaolin injection. Increased leukocyte-endothelial interactions were accompanied by joint inflammation, which was significantly reduced by oral and EP diclofenac (by 45% and by 30%, respectively) and only slightly ameliorated by simple topical diclofenac treatment (by 18%). The arthritis-related secondary hyperalgesic reactions were significantly ameliorated by oral and EP-enhanced topical diclofenac treatments. The knee cross-section area (which increased by 35%) was also reduced with both approaches. However, simple topical application did not influence the development of joint edema and secondary hyperalgesia. CONCLUSION: The study provides evidence for the first time of the potent anti-inflammatory and analgesic effects of EP-enhanced topical diclofenac during arthritis. The therapeutic benefit provided by EP is comparable with that of oral diclofenac; EP is a useful alternative to conventional routes of administration.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Artrite Experimental/tratamento farmacológico , Diclofenaco/administração & dosagem , Eletroquimioterapia , Articulação do Joelho/efeitos dos fármacos , Administração Cutânea , Animais , Comunicação Celular , Citocinas/biossíntese , Diclofenaco/efeitos adversos , Diclofenaco/farmacocinética , Masculino , Peroxidase/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Curr Drug Deliv ; 15(6): 887-897, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29336261

RESUMO

BACKGROUND: Periodontitis is a chronic inflammatory disease, which affects the supporting tissues of the teeth, and without proper treatment it may lead to tooth loss. Antibiotics - administered orally - have been widely used in the treatment of periodontitis. With the conventional administration routes, adequate drug levels cannot be reached in the periodontal pockets and oral application of antimicrobials could lead to side effects. Drug delivery systems containing antibiotics, administered at the site of infection, could possibly help eliminate pathogen bacteria and treat periodontitis. OBJECTIVE: The aim of the recent study was to create a locally swellable, biodegradable, biocompatible, mucoadhesive, lipophilic drug delivery system containing antimicrobial drugs which softens at body temperature, accommodate to the shape of the periodontal pocket and can provide extended drug release for at least one week. METHODS: During the formulation, thermoanalytical, consistency, wettability, swelling, degradation and drug release studies were applied to determine the ideal ratios of lipid bases, structure-building components and surface active agent concentrations. RESULTS AND DISCUSSION: The structure-building component cetostearyl alcohol appeared to be the most convenient, thanks to its wettability and mechanical properties, which led to controlled drug release. With the use of ideal concentrations of components (10% surfactant, 40% structure-building component, 32 % lipid base, 15% antimicrobial agent and 3% polymer), sustained drug release can be provided up to nearly 3 weeks.


Assuntos
Antibacterianos/farmacologia , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Lipídeos/química , Doenças Periodontais/tratamento farmacológico , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/química , Varredura Diferencial de Calorimetria , Humanos , Testes de Sensibilidade Microbiana , Doenças Periodontais/microbiologia , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA