Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuropharmacology ; 145(Pt A): 99-113, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462694

RESUMO

Potentiating social, cognitive, and sensorimotor stimulations the Environmental Enrichment (EE) increases levels of novelty and complexity experienced by individuals. Growing evidence demonstrates that parental EE experience, even occurring in the pre-reproductive phase, affects behavioral and neural developmental trajectories of the offspring. To discover how the accumulation of early maternal complex experiences may inform and shape the social behavior of the following generation, we examined the effects of pre-reproductive enrichment of dams (post-natal days 21-72) on the play performances of their male and female adolescent offspring. Furthermore, we examined the effects of pre-reproductive enrichment on maternal behavior (during post-partum days 1-10) and male intruder aggression (on post-partum day 11). Since oxytocin modulates maternal care, social bonding, and agonistic behavior, the number of oxytocinergic neurons of the paraventricular (PVN) and supraoptic (SON) nuclei was examined in both dams and offspring. Results revealed that enriched females exhibited higher levels of pup-oriented behaviors, especially Crouching, and initiated pup-retrieval more quickly than standard females after the maternal aggression test. Such behavioral peculiarities were accompanied by increased levels of oxytocinergic neurons in PVN and SON. Moreover, pre-reproductive maternal EE cross-generationally influenced the offspring according to sex. Indeed, male pups born to enriched females exhibited a reduced play fighting associated with a higher number of oxytocinergic neurons in SON in comparison to male pups born to standard-housed females. In conclusion, pre-reproductive EE to the mothers affects their maternal care and has a cross-generational impact on the social behavior of their offspring that do not directly experiences EE. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".


Assuntos
Meio Ambiente , Neurônios/metabolismo , Ocitocina/metabolismo , Comportamento Social , Agressão , Animais , Feminino , Abrigo para Animais , Hipotálamo/citologia , Hipotálamo/metabolismo , Masculino , Comportamento Materno/fisiologia , Comportamento Materno/psicologia , Neurônios/citologia , Distribuição Aleatória , Ratos Wistar , Fatores de Tempo
2.
Sci Rep ; 7(1): 9077, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831054

RESUMO

The muscarinic receptor response to acetylcholine regulates the hippocampal-related learning, memory, neural plasticity and the production and processing of the pro-nerve growth factor (proNGF) by hippocampal cells. The development and progression of diabetes generate a mild cognitive impairment reducing the functions of the septo-hippocampal cholinergic circuitry, depressing neural plasticity and inducing proNGF accumulation in the brain. Here we demonstrate, in a rat model of early type-1 diabetes, that a physical therapy, the electroacupuncture, counteracts the diabetes-induced deleterious effects on hippocampal physiology by ameliorating hippocampal-related memory functions; recovering the impaired long-term potentiation at the dentate gyrus (DG-LTP) and the lowered expression of the vesicular glutamate transporter 1; normalizing the activity-dependent release of proNGF in diabetic rat hippocampus. Electroacupuncture exerted its therapeutic effects by regulating the expression and activity of M1- and M2-acetylcholine muscarinic receptors subtypes in the dentate gyrus of hippocampus. Our results suggest that a physical therapy based on repetitive sensory stimulation could promote hippocampal neural activity, neuronal metabolism and functions, and conceivably improve the diabetes-induced cognitive impairment. Our data can support the setup of therapeutic protocols based on a better integration between physical therapies and pharmacology for the cure of diabetes-associated neurodegeneration and possibly for Alzheimer's disease.


Assuntos
Eletroacupuntura , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Muscarina/metabolismo , Animais , Contagem de Células , Giro Denteado/metabolismo , Giro Denteado/fisiopatologia , Diabetes Mellitus Experimental , Potenciação de Longa Duração , Memória , Modelos Biológicos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Plasticidade Neuronal , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Células Piramidais/metabolismo , Células Piramidais/patologia , Ratos , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M2/metabolismo , Receptores Muscarínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA